1 |
16825650 |
10098 |
The MLSA data revealed close relatedness between L. acidipiscis and L. cypricasei, with 99.8-100 % pheS, rpoA and atpA gene sequence similarities. |
- L. acidipiscis→ThemeOf→rpoA
- L. acidipiscis→ThemeOf→atpA
- rpoA→ThemeOf→L. acidipiscis
- atpA→ThemeOf→L. acidipiscis
|
2 |
17696886 |
192 |
After frozen storage (-20 to -30 C for 5-8 weeks), C. divergens and C. maltaromaticum seem to be particularly prominent in chilled MAP fish, as has been reported for cod, garfish, salmon, and tuna. |
- C. maltaromaticum→CauseOf→prominent
|
3 |
17696886 |
222 |
Thus, amino acid substitutions closer to the N-terminus in carnobacteriocin B2 drastically reduced or eliminated antimicrobial activity, whereas this was not so for substitutions close to the C-terminal part. |
- substitutions→CauseOf→eliminated
- substitutions→CauseOf→reduced
- reduced→CauseOf→eliminated
- eliminated→CauseOf→reduced
|
4 |
17696886 |
226 |
Chemical oxidation of tryptophan residues by N-bromosuccinimide showed that these residues were crucial for inhibitory activity, as modification of any one of them rendered divercin V41 inactive. |
- inhibitory activity→ThemeOf→rendered
- inhibitory activity→ThemeOf→divercin
- inhibitory activity→ThemeOf→modification
- inhibitory activity→ThemeOf→inactive
- modification→CauseOf→rendered
- rendered→CauseOf→inactive
- modification→ThemeOf→divercin
- divercin→ThemeOf→rendered
- modification→ThemeOf→inhibitory activity
- divercin→ThemeOf→inhibitory activity
- modification→CauseOf→inactive
- divercin→ThemeOf→modification
- inactive→CauseOf→rendered
- divercin→ThemeOf→inactive
|
5 |
17696886 |
256 |
Therefore, it has been suggested that a C. divergens strain in which the tyrosine decarboxylase gene is inactivated by mutagenesis could be used as a protective culture to prevent growth of L. monocytogenes in cold-smoked salmon. |
- tyrosine→ThemeOf→inactivated
- tyrosine→ThemeOf→mutagenesis
- growth→ThemeOf→tyrosine
- growth→ThemeOf→inactivated
- growth→ThemeOf→mutagenesis
- mutagenesis→ThemeOf→tyrosine
- mutagenesis→ThemeOf→growth
- mutagenesis→CauseOf→inactivated
- tyrosine→ThemeOf→growth
|
6 |
17696886 |
286 |
Production by C. maltaromaticum of alcohols and aldehydes from valine, leucine and/or isoleucine resulted in a malty, green aroma in skimmed milk and shrimp, and has also caused spoilage of cured ham (Table 4). |
- isoleucine→CauseOf→caused
- resulted in→CauseOf→caused
- isoleucine→CauseOf→resulted in
- caused→CauseOf→resulted in
|
7 |
17696886 |
307 |
Finally, C. maltaromaticum has been shown to cause a softer texture of salmon fillets when inoculated in high numbers. |
- C. maltaromaticum→CauseOf→cause
- C. maltaromaticum→ThemeOf→softer
- softer→ThemeOf→C. maltaromaticum
- softer→ThemeOf→cause
|
8 |
17696886 |
333 |
It is, therefore, not surprising that C. maltaromaticum and C. maltaromaticum-like strains are also found in the intestine or gills of healthy fish, including Arctic charr, Atlantic cod, Atlantic salmon, brown bullhead, trout, and various freshwater fish. |
- C. maltaromaticum-like→CauseOf→found
|
9 |
17696886 |
339 |
Carnobacterium divergens and C. maltaromaticum enhance the cellular and humoral immune responses and cytokine expression ratios of rainbow trout. |
- C. maltaromaticum→CauseOf→enhance
|
10 |
17696886 |
344 |
This specific case of pathogenesis is probably best understood as a result of opportunistic infection, although C. maltaromaticum (but not C. divergens, C. gallinarum, C. inhibens, C. mobile or C. viridans) exerts chitinolytic acitivity (Leisner & Ingmer, unpublished data), a feature that can be perceived as targeting the chitin-containing exoskeleton of insects. |
- C. maltaromaticum→CauseOf→exerts
|
11 |
17696886 |
360 |
This may, in some instances, be due to faulty methodology for detecting carnobacteria. |
- carnobacteria→ThemeOf→faulty
- faulty→ThemeOf→carnobacteria
|
12 |
18048734 |
412 |
The DNA G+C content of their closest relatives, L. salivarius JCM 1231T and L. aviarius subsp. |
- DNA G+C content→ThemeOf→L. salivarius
- L. salivarius→ThemeOf→DNA G+C content
|
13 |
18048734 |
418 |
Since KBL13T and GBL13 were found to be the same species, KBL13T was used as a representative strain in the experiments described below. |
- KBL13T→ThemeOf→GBL13
- GBL13→ThemeOf→KBL13T
|
14 |
18048734 |
421 |
DNA-DNA relatedness values between KBL13T and L. salivarius JCM 1231T and JCM 1150, and L. aviarius subsp. |
- JCM 1231T→ThemeOf→DNA-DNA relatedness
- DNA-DNA relatedness→ThemeOf→JCM 1231T
|
15 |
19783610 |
10105 |
Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. |
- mannitol→ThemeOf→rhamnose
- lactose→ThemeOf→rhamnose
- acid production from L-arabinose→ThemeOf→NBRC 102163T
- NBRC→CauseOf→mannitol
- NBRC 102163T→ThemeOf→mannitol
- acid production from L-arabinose→ThemeOf→mannitol
- NBRC→CauseOf→acid production from L-arabinose
- NBRC 102163T→ThemeOf→acid production from L-arabinose
- acid production from L-arabinose→ThemeOf→lactose
- NBRC→CauseOf→lactose
- NBRC 102163T→ThemeOf→lactose
- acid production from L-arabinose→CauseOf→NBRC
- NBRC→CauseOf→rhamnose
- NBRC 102163T→ThemeOf→rhamnose
- acid production from L-arabinose→ThemeOf→rhamnose
- rhamnose→ThemeOf→NBRC 102163T
- mannitol→ThemeOf→NBRC 102163T
- lactose→ThemeOf→NBRC 102163T
- rhamnose→ThemeOf→mannitol
- mannitol→ThemeOf→acid production from L-arabinose
- lactose→ThemeOf→mannitol
- rhamnose→ThemeOf→acid production from L-arabinose
- mannitol→ThemeOf→lactose
- lactose→ThemeOf→acid production from L-arabinose
- rhamnose→ThemeOf→lactose
- mannitol→CauseOf→NBRC
- lactose→CauseOf→NBRC
- rhamnose→CauseOf→NBRC
|
16 |
21603260 |
453 |
on the basis of the results of 16S rDNA phylogenetic analyses, the genus Weissella encompasses a phylogenetically coherent group of lactic acid bacteria and includes twelve validated Leuconostoc-like species, currently, including W. confusa (formerly Lactobacillus confusus), W. minor (formerly Lactobacillus minor), W. kandleri (formerly Lactobacillus kandleri), W. halotolerans (formerly Lactobacillus halotolerans), W. viridescens (formerly Lactobacillus viridescens), Weissella paramesenteroides (formerly Leuconostoc paramesenteroides), W. hellenica, W. thailandensis, W. cibaria, Weissella kimchii, Weissella soil, and Weissella koreensis. |
- Weissella→CauseOf→genus Weissella
- genus Weissella→CauseOf→Weissella
|
17 |
21995520 |
589 |
This was far higher than cellobiose, the other beta-glucoside tested, although the final pH of both cultures was very similar, and the medium was buffered in the same way as MRS. A high-quality draft genome sequence was generated for L. ruminis ATCC 25644 and a finished genome sequence was generated for ATCC 27782, as described in Methods. |
- ATCC 25644→ThemeOf→MRS
- MRS→ThemeOf→ATCC 25644
|
18 |
21995520 |
606 |
The amino acid sequence of BglB and BglB2 showed 70% and 77% identity to the beta-glucosidases identified in the genomes of L. helveticus DPC 4571 and L. ultunensis DSM 16047, respectively. |
- BglB2→ThemeOf→DPC
- BglB→ThemeOf→DPC
- DPC→ThemeOf→BglB
- DPC→ThemeOf→BglB2
|
19 |
21995520 |
649 |
The bovine L. ruminis isolates, ATCC 27780T, 27781 and 27782 were previously reported to utilise beta-glucan hydrolysates as a carbohydrate source, and in that study, all bovine isolates utilised beta-glucan hydrolysates of DP3, and only ATCC 27780T was unable to utilise DP4 oligosaccharide. |
- ATCC→CauseOf→DP3
- ATCC→CauseOf→utilised
- utilised→CauseOf→ATCC
- DP3→CauseOf→ATCC
|
20 |
21995520 |
650 |
ATCC 27781 was distinguished by being able to utilise the highest percentage of both DP3 and DP4 beta glucan. |
- DP3→ThemeOf→ATCC
- DP4→ThemeOf→ATCC
- ATCC→ThemeOf→DP3
- ATCC→ThemeOf→DP4
|
21 |
21995520 |
655 |
In addition, L. ruminis was capable of moderate to strong fermentation of Raftilose Synergy 1, an oligofructose-enriched inulin. |
- fermentation→ThemeOf→Raftilose
- Raftilose→ThemeOf→fermentation
|
22 |
21995520 |
684 |
The Artemis program was used to visualise and identify carbohydrate metabolism genes in the genome of Lactobacillus ruminis ATCC 25644 and ATCC 27782. |
- ATCC→CauseOf→carbohydrate metabolism genes
- carbohydrate metabolism genes→CauseOf→ATCC
|
23 |
22515692 |
10120 |
cremoris, Leuconostoc pseudomesenteroides, Pediococcus acidilactici, Pediococcus pentosaceus, Weissella hellenica, Weissella paramesenteroides and Carnobacterium divergens. |
- Leuconostoc pseudomesenteroides→CauseOf→Weissella
- Leuconostoc pseudomesenteroides→CauseOf→Weissella
- Weissella→CauseOf→Leuconostoc pseudomesenteroides
- Weissella→ThemeOf→Pediococcus
- Weissella→CauseOf→Leuconostoc pseudomesenteroides
- Weissella→ThemeOf→Pediococcus
- Pediococcus→ThemeOf→Weissella
- Pediococcus→ThemeOf→Weissella
|
24 |
22768237 |
728 |
The genes pox, orf2 and the sequence of insertion IS1297 exhibited DNA sequence identity percentages higher than 90% with genes found in Lactobacillus buchneri, Enterococcus faecalis and Leuconostoc sp., respectively (Table S3). |
- DNA sequence identity→ThemeOf→orf2
- insertion→ThemeOf→Leuconostoc
- insertion→ThemeOf→pox
- Leuconostoc→ThemeOf→DNA sequence identity
- insertion→ThemeOf→DNA sequence identity
- Leuconostoc→ThemeOf→insertion
- insertion→ThemeOf→orf2
- pox→ThemeOf→DNA sequence identity
- orf2→ThemeOf→DNA sequence identity
- pox→ThemeOf→insertion
- orf2→ThemeOf→insertion
- DNA sequence identity→ThemeOf→Leuconostoc
- DNA sequence identity→ThemeOf→pox
- DNA sequence identity→ThemeOf→insertion
|
25 |
22768237 |
731 |
Plasmid pGL2 appears to be a RCR plasmid, as suggested by the homology of its replication gene to those of other known RCR plasmids, such as pWCFS102 of Lactobacillus plantarum, pYSI8 of Lactobacillus sakei (Figure 3) and pSSU1 of Streptococcus suis , all members of the rolling-circle replication pMV158 family. |
- pGL2→ThemeOf→pYSI8
- pWCFS102→ThemeOf→pGL2
- pYSI8→ThemeOf→pGL2
- pGL2→ThemeOf→pWCFS102
|
26 |
22768237 |
744 |
The protein encoded by orf16 displayed 42% aa identity to N-acetylmuramoyl-L-alanine amidase of Streptococcus dysgalactiae and contains two main enzymatic domains: a glucosaminidase domain (pfam01832) and a cysteine/histidine-dependant amidohydrolase/peptidase (designated CHAP; pfam05257) domain. |
- pfam01832→ThemeOf→orf16
- orf16→ThemeOf→pfam01832
|
27 |
22768237 |
753 |
Txn of L. garvieae exhibits the catalytic Glu-X-Glu sequence (residues 199 to 201 in Txn), the NAD binding sites Ser-Thr-Ser sequence (amino acids 156-158 in Txn) and a conserved Arg residue (residing at position 129 in Txn), characteristic of the CT-group of many mono-ADP-ribosyltransferases. |
- Arg→ThemeOf→Txn
- Txn→ThemeOf→Glu-X-Glu
- Arg→ThemeOf→Txn
- Arg→ThemeOf→Glu-X-Glu
- Txn→ThemeOf→Arg
- Arg→ThemeOf→Txn
- Txn→ThemeOf→Glu-X-Glu
- Glu-X-Glu→ThemeOf→Txn
- Txn→ThemeOf→Arg
- Glu-X-Glu→ThemeOf→Txn
- Txn→ThemeOf→Glu-X-Glu
- Glu-X-Glu→ThemeOf→Txn
- Txn→ThemeOf→Arg
- Glu-X-Glu→ThemeOf→Arg
- Txn→ThemeOf→Glu-X-Glu
- Glu-X-Glu→ThemeOf→Txn
- Arg→ThemeOf→Txn
- Txn→ThemeOf→Arg
|
28 |
22808200 |
768 |
Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. |
- ATCC27782→ThemeOf→transcribed
- ATCC27782→CauseOf→higher
- motility→ThemeOf→transcribed
- motility→ThemeOf→ATCC27782
- motility→ThemeOf→higher
- transcribed→ThemeOf→motility
- transcribed→ThemeOf→ATCC27782
- transcribed→ThemeOf→higher
- ATCC27782→ThemeOf→motility
|
29 |
22808200 |
777 |
Particular substitutions within this region enable selected flagellate alpha- and epsilon-proteobacterial pathogens, including H. pylori and C. jejuni, to evade immune-recognition without compromising their motility. |
- flagellate→ThemeOf→enable
- evade immune-recognition→ThemeOf→substitutions
- evade immune-recognition→ThemeOf→enable
- evade immune-recognition→ThemeOf→flagellate
- substitutions→ThemeOf→evade immune-recognition
- substitutions→CauseOf→enable
- substitutions→ThemeOf→flagellate
- flagellate→ThemeOf→evade immune-recognition
- flagellate→ThemeOf→substitutions
|
30 |
22808200 |
789 |
Three other species of the L. salivarius clade tested, specifically L. ghanensis L489T, L. mali DSM20444T and L. nagelii DSM13675T were also motile. |
- L. nagelii→ThemeOf→motile
- L489T→ThemeOf→motile
- L. mali DSM20444T→ThemeOf→motile
- motile→ThemeOf→L. nagelii
- motile→ThemeOf→L489T
- motile→ThemeOf→L. mali DSM20444T
- motile→ThemeOf→DSM20444T
- DSM20444T→ThemeOf→motile
|
31 |
22808200 |
792 |
Relative to the L. ruminis motility locus, other notable variations in the L. mali motility region include the inversion of the motAB gene pair, the absence of homologs for flaG and a potential negative regulator (LRC_15730/ANHS_518; see below) of motility gene expression and the presence of only one flagellin gene in a strain that is known to be motile. |
- inversion→ThemeOf→absence
- motility→ThemeOf→inversion
- inversion→ThemeOf→presence
- motility→ThemeOf→motAB
- inversion→ThemeOf→motility
- motility→ThemeOf→absence
- inversion→ThemeOf→LRC_15730
- motility→ThemeOf→presence
- motAB→ThemeOf→inversion
- motility→ThemeOf→LRC_15730
- motAB→ThemeOf→absence
- LRC_15730→ThemeOf→inversion
- motAB→ThemeOf→presence
- LRC_15730→ThemeOf→absence
- motAB→ThemeOf→motility
- LRC_15730→ThemeOf→presence
- absence→ThemeOf→presence
- LRC_15730→ThemeOf→motility
- inversion→ThemeOf→motAB
- presence→ThemeOf→absence
|
32 |
22808200 |
803 |
To determine if L. ruminis ATCC25644 might regain motility in vivo, isogenic, rifampicin resistant ATCC25644 and ATCC27782 strains were individually fed to mice and were later recovered from their faeces. |
- ATCC25644→ThemeOf→ATCC25644
- motility→ThemeOf→regain
- ATCC25644→ThemeOf→motility
- motility→ThemeOf→ATCC27782
- ATCC27782→ThemeOf→regain
- motility→CauseOf→ATCC25644
- ATCC27782→ThemeOf→ATCC25644
- ATCC27782→ThemeOf→motility
- ATCC25644→ThemeOf→ATCC25644
- ATCC25644→CauseOf→regain
- ATCC25644→ThemeOf→ATCC27782
- ATCC25644→CauseOf→motility
- ATCC25644→ThemeOf→regain
- motility→ThemeOf→ATCC25644
|
33 |
22808200 |
820 |
The following substitutions were made to prepare MRS media (500 ml) with alternative protein, phosphate and carbon sources: 9 g of Bactocasitone or Bactopeptone in place of peptone (5 g) and Lab Lemco powder (4 g); 1 g of beta-glycerophosphate in place of dipotassium hydrogen phosphate; 10 g of preferred carbohydrate in place of glucose. |
- Bactocasitone→ThemeOf→preferred carbohydrate
- preferred carbohydrate→ThemeOf→Bactocasitone
|
34 |
22808200 |
837 |
Primer sequences were designed for groEL, fliM and LRC_15730 (Table S5). |
- LRC_15730→ThemeOf→groEL
- groEL→ThemeOf→LRC_15730
|
35 |
22808200 |
839 |
Rifampicin-resistant L. ruminis ATCC25644 and L. ruminis ATCC27782 variants were produced by serially subculturing these strains in MRS media with increasing concentrations of rifampicin until bacteria resistant to 200 microg/ml rifampicin were recovered. |
- ATCC27782→ThemeOf→variants
- variants→ThemeOf→ATCC27782
|
36 |
23443163 |
860 |
Different sets of target strains were used including common indicator strains employed by different laboratories in similar studies (e.g., Lactococcus lactis CNRZ 117, Lactobacillus sakei LMG 2313, Listeria innocua BL86/26, etc. |
- LMG→ThemeOf→Listeria
- Listeria→ThemeOf→LMG
|
37 |
23443163 |
866 |
More precisely, the milk CFCS of L. lactis, as well as the MRS CFCSs of both E. faecium strains gave a "borderline" inhibition (i.e., less colonies of the target strain around the well) towards Porphyromonas gingivalis DSM 20709T. |
- DSM 20709T→ThemeOf→Porphyromonas gingivalis
- DSM 20709T→CauseOf→less
- Porphyromonas gingivalis→ThemeOf→less
- Porphyromonas gingivalis→ThemeOf→DSM 20709T
- colonies→ThemeOf→Porphyromonas gingivalis
- Porphyromonas gingivalis→ThemeOf→colonies
|
38 |
23443163 |
868 |
More specifically, the MRS CFCS of L. fermentum ACA-DC 179 and milk CFCS of L. plantarum ACA-DC 269 were active against S. oralis LMG 14532T. |
- LMG→CauseOf→active
|
39 |
23637931 |
977 |
The most abundant Lactobacillus species in ZC2 were L. brevis (26.5%), L. plantarum (3.4%), L. oris (3.4%), L. johnsonii (3.3%), L. amylovorus (3.2%), and L. fermentum (2.8%). |
- Lactobacillus→ThemeOf→ZC2
- L. johnsonii→ThemeOf→ZC2
- L. johnsonii→ThemeOf→Lactobacillus
- ZC2→ThemeOf→L. johnsonii
- ZC2→ThemeOf→Lactobacillus
- Lactobacillus→ThemeOf→L. johnsonii
|
40 |
23637931 |
986 |
For instance, some of the abundant COG functions in ZC1 and/or ZC2 (Table 3), such as hydrolases and dehydrogenases (COG1012, COG1960, COG1028, COG0673 and COG0561) and proteins involved with carbohydrate transport and metabolism (COG0395, COG1175, COG1129, COG1109, COG2814 and COG2723), can be related directly to the dynamics and recycling power in the microbial community structure in a biomass degrading environment. |
- COG0395→ThemeOf→ZC2
- COG1028→ThemeOf→ZC2
- COG1012→ThemeOf→ZC2
- ZC2→ThemeOf→COG0395
- ZC2→ThemeOf→COG1028
- ZC2→ThemeOf→COG1012
- ZC2→ThemeOf→COG0673
- COG0673→ThemeOf→ZC2
|
41 |
23637931 |
987 |
In addition, among the most abundant functions present in ZC1 and/or ZC2 metagenomes (Table 3), we found several COGs associated with bacterial efflux pumps (COG1132, COG0841, COG0534, COG1131 and COG1136), which are known to export substances such as antibiotics and toxic molecules. |
- COG1132→CauseOf→associated
- COG1136→CauseOf→associated
- COG1131→CauseOf→associated
- COG0534→CauseOf→associated
- COG0841→CauseOf→associated
|
42 |
23637931 |
989 |
The 30 most abundant COG functions (Table 3) also include functions related to regulation in response to environmental stimuli such as histidine kinases and response regulators (COG0642 and COG0745) and transcriptional regulators (COG1609 and COG0583). |
- histidine→ThemeOf→COG1609
- COG0642→ThemeOf→regulation
- COG0642→ThemeOf→histidine
- COG1609→ThemeOf→regulation
- COG1609→ThemeOf→histidine
- regulation→ThemeOf→histidine
- regulation→ThemeOf→COG0642
- regulation→ThemeOf→COG1609
- histidine→ThemeOf→regulation
- histidine→ThemeOf→COG0642
|
43 |
23637931 |
995 |
In addition, we were able to identify 65 predicted protein sequences containing the dockerin domain (pfam00404) and 36 predicted protein sequences with the cohesin domain (pfam00963) in the ZC1 metagenome. |
- ZC1→ThemeOf→pfam00404
- dockerin→ThemeOf→pfam00404
- dockerin→ThemeOf→ZC1
- pfam00404→ThemeOf→dockerin
- pfam00404→ThemeOf→ZC1
- ZC1→ThemeOf→dockerin
|
44 |
23637931 |
1024 |
Among these overrepresented COGs are those associated with bacterial efflux pumps (COG 1132 and COG0534), which are abundant within the ZC1 and ZC2 metagenomes, as already noted above. |
- associated→CauseOf→overrepresented
- COG→CauseOf→associated
- COG→CauseOf→overrepresented
- overrepresented→CauseOf→associated
- COG0534→CauseOf→associated
- COG0534→CauseOf→overrepresented
|
45 |
23637931 |
1026 |
Also, predicted genes related to phosphotransferase system (COG1455, COG1263 and COG1264) and to ABC-type transport systems (Table S6) are overrepresented in the ZC2 metagenome, revealing its high potential for sugar uptake. |
- phosphotransferase system→ThemeOf→overrepresented
- phosphotransferase system→ThemeOf→ZC2
- COG1455→ThemeOf→phosphotransferase system
- COG1455→CauseOf→overrepresented
- COG1455→ThemeOf→ZC2
- ZC2→ThemeOf→phosphotransferase system
- ZC2→ThemeOf→COG1455
- ZC2→ThemeOf→overrepresented
- phosphotransferase system→ThemeOf→COG1455
|
46 |
23661478 |
1063 |
L. pobuzihii E100301T can produce l-lactic acid from l-arabinose, rhamnose, lactose, and 5-ketogluconate, but not from mannitol. |
- E100301T→CauseOf→produce
- E100301T→ThemeOf→l-lactic acid
- l-lactic acid→ThemeOf→produce
- l-lactic acid→ThemeOf→E100301T
|
47 |
23700436 |
1084 |
In this setting, Lu-doh-huang is used for its antipyretic and diuretic effects and for detoxification, reduction of swelling, and gut decontamination as empiric treatment. |
- Lu-doh-huang→CauseOf→reduction
|
48 |
23700436 |
1085 |
In addition, Lu-doh-huang induces apoptosis of Hep3B hepatoma cells, reduces inflammation in lipopolysaccharide-induced RAW264.7 cells, and has antioxidative properties. |
- hepatoma→ThemeOf→Lu-doh-huang
- Lu-doh-huang→ThemeOf→inflammation
- hepatoma→ThemeOf→induces
- Lu-doh-huang→CauseOf→reduces
- Lu-doh-huang→CauseOf→induces
- Lu-doh-huang→ThemeOf→antioxidative
- induces→CauseOf→reduces
- inflammation→ThemeOf→Lu-doh-huang
- inflammation→ThemeOf→induces
- antioxidative→ThemeOf→reduces
- reduces→CauseOf→induces
- antioxidative→ThemeOf→Lu-doh-huang
- Lu-doh-huang→ThemeOf→hepatoma
- antioxidative→ThemeOf→induces
|
49 |
23700436 |
1086 |
In animal models, Lu-doh-huang exerts a protective effect on CCl4-induced hepatotoxicity in rats; induces the activities of NADPH-CYP reductase, glutathione S-transferase, superoxide dismutase, glutathione peroxidase, and catalase in Balb/c mice; significantly decreases plasma glucose, total cholesterol, and triglycerides; and inhibits tyrosinase activity in MDCK and A375 cells. |
- Lu-doh-huang→CauseOf→induces
- Lu-doh-huang→CauseOf→inhibits
- Lu-doh-huang→CauseOf→decreases
|
50 |
23700436 |
1135 |
In addition, we performed PCA to characterize the microbial community succession of Lu-doh-huang (Fig. |
- Lu-doh-huang→ThemeOf→microbial community succession
- microbial community succession→ThemeOf→Lu-doh-huang
|
51 |
23700436 |
1154 |
A key difference between these products is the type of fermentation used in their manufacture, that is, Lu-doh-huang undergoes strictly anaerobic fermentation (inside bamboo sections), whereas the production of Semen Sojae Praeparatum involves aerobic fermentation. |
- Lu-doh-huang→CauseOf→undergoes
|
52 |
23700436 |
1162 |
Therefore, we speculate that the main purpose of the unique production process of Lu-doh-huang is to enable microbial enzymes secreted during fermentation to biotransform various components of the product. |
- biotransform→ThemeOf→enable
- biotransform→ThemeOf→Lu-doh-huang
- Lu-doh-huang→ThemeOf→biotransform
- Lu-doh-huang→CauseOf→enable
|
53 |
24936378 |
1184 |
The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133. |
- BH0900→ThemeOf→AH3133
- AH3133→ThemeOf→BH0900
|
54 |
24936378 |
1223 |
However, it was observed that Pseudomonas aeruginosa ATCC 27853 resisted the inhibitory potential as compared with the other indicator bacteria (Fig. |
- ATCC 27853→CauseOf→resisted
|
55 |
24936378 |
1245 |
Furthermore, L-arabinose, D-xylose, D-mannose, mannitol, lactose, B-gentiobiose, maltose and saccharose were variously fermented. |
- D-mannose→ThemeOf→L-arabinose
- mannitol→ThemeOf→L-arabinose
- D-mannose→ThemeOf→D-xylose
- mannitol→ThemeOf→D-xylose
- D-mannose→ThemeOf→mannitol
- L-arabinose→ThemeOf→D-mannose
- L-arabinose→ThemeOf→D-xylose
- L-arabinose→ThemeOf→mannitol
- D-xylose→ThemeOf→D-mannose
- D-xylose→ThemeOf→L-arabinose
- D-xylose→ThemeOf→mannitol
- mannitol→ThemeOf→D-mannose
|
56 |
24936378 |
1247 |
Cluster F), this cluster contained four strains of Lactobacillus sp., BH1611, BH1711, BH181 and BH1911. |
- Lactobacillus→ThemeOf→BH1711
- Lactobacillus→ThemeOf→BH1611
- BH1711→ThemeOf→Lactobacillus
- BH1711→ThemeOf→BH1611
- BH1611→ThemeOf→Lactobacillus
- BH1611→ThemeOf→BH1711
|
57 |
24936378 |
1261 |
However, strain BH2422 (cluster H) was also unable to ferment D-arabinose. |
- ferment D-arabinose→ThemeOf→BH2422
- ferment D-arabinose→ThemeOf→unable
- BH2422→CauseOf→unable
- BH2422→ThemeOf→ferment D-arabinose
|
58 |
24936378 |
1292 |
BH2122) inhibits strongly E. coli, Salmonella typhimurium and moderately inhibits Pseudomonas aeruginosa but is inactive towards Shigella sp. |
- Salmonella→ThemeOf→inhibits
- BH2122→CauseOf→inhibits
- inhibits→CauseOf→inhibits
- inhibits→CauseOf→inhibits
- E. coli→ThemeOf→Salmonella
- Pseudomonas→ThemeOf→Salmonella
- E. coli→ThemeOf→inhibits
- Pseudomonas→ThemeOf→inhibits
- E. coli→ThemeOf→BH2122
- Pseudomonas→ThemeOf→BH2122
- E. coli→ThemeOf→inhibits
- Pseudomonas→ThemeOf→inhibits
- Salmonella→ThemeOf→E. coli
- BH2122→ThemeOf→E. coli
- Salmonella→ThemeOf→inhibits
- BH2122→ThemeOf→Salmonella
- Salmonella→ThemeOf→Pseudomonas
- BH2122→CauseOf→inhibits
- Salmonella→ThemeOf→BH2122
- BH2122→ThemeOf→Pseudomonas
|
59 |
24936378 |
1301 |
Overall, all isolates fermented maltose and cellobiose except Pediococcus acidilactici AH5255 (cluster E) and Pediococcus pentosaceus AH3433, AH3433A, AH3433B, AH3433C, AH3433D and AH3433E (cluster I). |
- fermented→ThemeOf→AH3433C
- fermented→ThemeOf→AH3433B
- AH3433E→ThemeOf→fermented
- fermented→ThemeOf→AH3433A
- AH3433→CauseOf→fermented
- fermented→ThemeOf→AH5255
- AH3433D→ThemeOf→fermented
- AH3433A→ThemeOf→fermented
- AH3433C→ThemeOf→fermented
- AH5255→ThemeOf→fermented
- AH3433B→ThemeOf→fermented
- fermented→ThemeOf→AH3433E
- fermented→CauseOf→AH3433
- fermented→ThemeOf→AH3433D
|
60 |
24942190 |
4171 |
Amongst the subfamily of MOBV1 plasmids, three groups of oriT sequences, represented by plasmids pMV158, pT181, and p1414 were identified. |
- pT181→ThemeOf→pMV158
- MOBV1→ThemeOf→pMV158
- pMV158→ThemeOf→pT181
- pMV158→ThemeOf→MOBV1
|
61 |
24942190 |
4200 |
The nick introduced by Rep or Tra/Mob proteins generates a free 3'-OH end, which acts as a primer for leading-strand synthesis in both cases, VGT and HGT. |
- HGT→ThemeOf→VGT
- VGT→ThemeOf→HGT
- VGT→ThemeOf→Rep
- Rep→ThemeOf→VGT
|
62 |
24942190 |
4219 |
Although we have not performed any further search, a homolog of the pMV158-tetL determinant was found in the chromosome of Bacillus subtilis, whereas a cat gene, homologous to the one harbored by plasmids pC194 and pC221 has been described to be present in the chromosome of G+ bacteria, like Bacillus pumilus or Streptococcus pneumoniae, and even in the chromosome of Clostridium perfringens. |
- pC221→CauseOf→found
|
63 |
24942190 |
4224 |
In vitro, the MobM-protein from pMV158 was able to relax supercoiled DNA from both plasmids. |
- pMV158→ThemeOf→MobM-protein
- MobM-protein→ThemeOf→pMV158
|
64 |
24942190 |
4229 |
In general, we found a good correlation between the G + C content of RCR-plasmids and their respective hosts, with the exception of the staphylococcal plasmid pUB110 which has a G + C content close to 45%, making it a plasmid which has been considered more like a bacilli than a staphylococci replicon. |
- G + C→ThemeOf→pUB110
- G + C content→ThemeOf→pUB110
- G + C content→ThemeOf→G + C
- pUB110→ThemeOf→G + C content
- pUB110→ThemeOf→G + C
- G + C→ThemeOf→G + C content
|
65 |
24942190 |
4245 |
It was believed that plasmids are DNA molecules that result from shuffling of various gene cassettes, evolving independently one of each other. |
- shuffling→CauseOf→result
|
66 |
24942190 |
4252 |
A total of 97 sequences were manually identified upstream to their respective relaxase encoded genes (five of them exhibiting two different MOBV-related oriTs: pSTE1, pKKS285, pSCFS1, unnamed (GenBank Acc. |
- pSCFS1→ThemeOf→pKKS285
- pKKS285→ThemeOf→pSCFS1
- pKKS285→ThemeOf→pSTE1
- pSTE1→ThemeOf→pKKS285
|
67 |
24942190 |
4260 |
It is more intriguing the finding that pC194 and DeltaoriT-Deltamob-derivatives of plasmids pUB110 and pTA1060 were efficiently mobilized by the mating apparatus of ICEBs1, but without the intervention of the ICEBs1 NicK relaxase. |
- pC194→ThemeOf→pTA1060
- pTA1060→ThemeOf→pC194
|
68 |
24942190 |
4280 |
Eight mating-pair formation (MPF) types have been phylogenetically described; three of them, MPFFATA, MPFFA and MPFT were able to mobilize MOBV1 plasmids. |
- mobilize MOBV1 plasmids→ThemeOf→MPFT
- mobilize MOBV1 plasmids→ThemeOf→MPFFATA
- MPFT→ThemeOf→mobilize MOBV1 plasmids
- MPFT→ThemeOf→MPFFATA
- MPFFATA→ThemeOf→mobilize MOBV1 plasmids
- MPFFATA→ThemeOf→MPFT
|
69 |
24942190 |
4283 |
MOBV1 relaxases are predominantly linked to RCR initiators of the three different subgroups: Rep_1 (PF01446), Rep_2 (PF01719), and Rep_trans (PF02486). |
- Rep→ThemeOf→linked
- PF01446→ThemeOf→MOBV1
- Rep→ThemeOf→PF01446
- PF01446→CauseOf→linked
- Rep→ThemeOf→PF01719
- MOBV1→ThemeOf→PF01446
- Rep→ThemeOf→linked
- MOBV1→ThemeOf→PF01719
- Rep→ThemeOf→PF01446
- MOBV1→ThemeOf→linked
- Rep→ThemeOf→PF01719
- PF01719→ThemeOf→Rep
- Rep→ThemeOf→linked
- PF01719→ThemeOf→Rep
- PF01446→ThemeOf→Rep
- PF01719→ThemeOf→Rep
- Rep→ThemeOf→PF01446
- PF01446→ThemeOf→Rep
- PF01719→ThemeOf→MOBV1
- Rep→ThemeOf→PF01719
- PF01446→ThemeOf→Rep
- PF01719→CauseOf→linked
|
70 |
24942190 |
4304 |
Deletion of the region encompassing the ssoA led to accumulation of ssDNA intermediates and to plasmid instability, but the plasmids were still able to replicate. |
- plasmid instability→ThemeOf→ssDNA intermediates
- plasmid instability→ThemeOf→Deletion
- plasmid instability→ThemeOf→accumulation
- ssDNA intermediates→ThemeOf→plasmid instability
- ssDNA intermediates→ThemeOf→Deletion
- ssDNA intermediates→ThemeOf→accumulation
- Deletion→ThemeOf→plasmid instability
- Deletion→ThemeOf→ssDNA intermediates
- Deletion→CauseOf→accumulation
|
71 |
25501479 |
10134 |
Moreover, the presence of a large number of mobile genetic elements within and flanking the motility operon of L. curvatus suggests recent horizontal transfer between members of two distinct Lactobacillus clades: L. acidipiscis in the L. salivarius clade and L. curvatus inthe L. sakei clade. |
- L. acidipiscis→CauseOf→horizontal
- L. acidipiscis→ThemeOf→motility
- motility→ThemeOf→horizontal
- motility→ThemeOf→L. acidipiscis
|
72 |
25584532 |
1350 |
Apart from mobC and rlx coding for mobilization proteins, two additional genes (SMA_p0016 and SMA_p0017) encode a conserved hypothetical protein and a Fic family protein, respectively. |
- SMA_p0017→ThemeOf→Fic
- Fic→ThemeOf→SMA_p0017
- Fic→ThemeOf→SMA_p0016
- SMA_p0016→ThemeOf→Fic
|
73 |
25584532 |
1352 |
We found a 2.5 kb region within a large genomic island of S. macedonicus ACA-DC 198 containing genes SMA_0309 and SMA_0310 that showed >= 98% identity with cadC and cadA of pAH82. |
- cadA→ThemeOf→SMA_0309
- cadA→ThemeOf→SMA_0310
- SMA_0309→ThemeOf→cadA
- SMA_0310→ThemeOf→cadA
|
74 |
25918672 |
1510 |
Variants of the L. acidipiscis and L. rennini, represented by bands "h" and "k", respectively, were also detected in the product made in northeastern Thailand (lane 6). |
- L. acidipiscis→ThemeOf→Variants
- Variants→ThemeOf→L. acidipiscis
- Variants→ThemeOf→L. rennini
- L. rennini→ThemeOf→Variants
|
75 |
26415554 |
1605 |
Fucose residues are present in oligosaccharides in milk and on erythrocyte surface antigens. |
- Fucose→CauseOf→present
|
76 |
26415554 |
1614 |
A major class of surface proteins in Gram-positive bacteria are those anchored by sortase enzymes that recognize a highly conserved LPXTG sequence motif. |
- sortase→ThemeOf→LPXTG
- LPXTG→ThemeOf→sortase
|
77 |
26415554 |
1646 |
16) including widespread IS families (IS3 is nearly universal), as well as sequences that selectively occur in particular niches (for example, IS91 in dairy L. casei and L. paracasei tolerans and IS481 in brewing L. paracollinoides, L. farraginis and P. inopinatus). |
- IS91→CauseOf→occur
- IS481→CauseOf→occur
|
78 |
26415554 |
1684 |
These searches included the DUF1034, which is equivalent to the Fn1 domain of ScpA; the CHU_C model corresponding to the Fn2 domain; the PA domain; SLAP, which is an S layer-anchoring domain; and a manual inspection for LPXTG derivative sequence. |
- DUF1034→ThemeOf→ScpA
- CHU→ThemeOf→ScpA
- CHU→ThemeOf→DUF1034
- ScpA→ThemeOf→CHU
- ScpA→ThemeOf→DUF1034
- DUF1034→ThemeOf→CHU
|
79 |
26783070 |
10138 |
L. plantarum showed a mucin adhesion rate similar to that of L. plantarum 299v and L. casei Shirota, while L. pentosus and L. acidipiscis had a lower mucin adhesion. |
- mucin adhesion→ThemeOf→lower
- L. acidipiscis→ThemeOf→mucin adhesion
- L. acidipiscis→ThemeOf→mucin adhesion
- L. acidipiscis→CauseOf→lower
- mucin adhesion→ThemeOf→L. acidipiscis
- mucin adhesion→ThemeOf→mucin adhesion
- mucin adhesion→ThemeOf→lower
- mucin adhesion→ThemeOf→L. acidipiscis
- mucin adhesion→ThemeOf→mucin adhesion
|
80 |
26783070 |
10141 |
This is the first time that halotolerant lactic acid bacteria have been shown to have probiotic properties. |
- halotolerant→ThemeOf→probiotic
- halotolerant→ThemeOf→lactic
- probiotic→ThemeOf→halotolerant
- probiotic→ThemeOf→lactic
- lactic→ThemeOf→halotolerant
- lactic→ThemeOf→probiotic
|
81 |
27743669 |
10147 |
Based on morphological and biochemical characteristics, and 16S rRNA gene sequence analysis, natural strains from both grasses were identified as L. plantarum, L. casei, Lactobacillus acidipiscis, Leuconostoc pseudomesenteroides, Leuconostoc garlicum, Weissella confusa, and Lactococcus lactis. |
- Weissella→ThemeOf→Leuconostoc
- Leuconostoc→ThemeOf→Lactococcus
- Leuconostoc→ThemeOf→Weissella
- Lactococcus→ThemeOf→Weissella
- Lactococcus→ThemeOf→Leuconostoc
- Weissella→ThemeOf→Lactococcus
|
82 |
28028487 |
1726 |
This was an alternative procedure owing to the poor performance of pick_closed_otus.py, which reduced the overall number of OTUs in the cockatiel samples (Supplemental Information 1). |
- number→ThemeOf→reduced
- number→ThemeOf→pick_closed_otus.py
- pick_closed_otus.py→CauseOf→reduced
- pick_closed_otus.py→ThemeOf→number
|
83 |
28028487 |
1748 |
The most common species (as best BLAST hits) for cockatiels are Lactobacillus coleohominis, L. reuteri and L. acidipiscis. |
- L. reuteri→ThemeOf→Lactobacillus
- L. acidipiscis→ThemeOf→Lactobacillus
- Lactobacillus→ThemeOf→L. reuteri
- Lactobacillus→ThemeOf→L. acidipiscis
|
84 |
28261168 |
1901 |
This implies that co-existence of gadA and gadB in Lb. |
- gadB→ThemeOf→gadA
- gadA→ThemeOf→gadB
|
85 |
28261168 |
1952 |
brevis GadA (WT) exhibited a significant (p < 0.05) activity than its two mutants with modifications to its N-terminus (Figure 4D). |
- modifications→ThemeOf→activity
- activity→ThemeOf→modifications
|
86 |
28261168 |
1990 |
Moreover, transmembrane potential, which contributes to amino acid-dependent acid resistance in bacteria, could be increased by glutamate decarboxylation (Teixeira et al.,). |
- glutamate decarboxylation→CauseOf→increased
- glutamate decarboxylation→ThemeOf→transmembrane potential
- glutamate decarboxylation→ThemeOf→amino acid-dependent acid resistance
- transmembrane potential→ThemeOf→increased
- amino acid-dependent acid resistance→ThemeOf→increased
- transmembrane potential→ThemeOf→decarboxylation
- amino acid-dependent acid resistance→ThemeOf→transmembrane potential
- transmembrane potential→ThemeOf→glutamate decarboxylation
- amino acid-dependent acid resistance→ThemeOf→decarboxylation
- transmembrane potential→ThemeOf→amino acid-dependent acid resistance
- amino acid-dependent acid resistance→ThemeOf→glutamate decarboxylation
- decarboxylation→CauseOf→increased
- decarboxylation→ThemeOf→transmembrane potential
- decarboxylation→ThemeOf→amino acid-dependent acid resistance
|
87 |
28261168 |
1996 |
brevis GadB demonstrated that these mutants extended their activities toward near-neutral acidity (Yu et al.,; Shi et al.,). |
- mutants→ThemeOf→activities toward near-neutral acidity
- mutants→CauseOf→extended
- mutants→ThemeOf→GadB
- GadB→ThemeOf→activities toward near-neutral acidity
- GadB→ThemeOf→extended
- GadB→ThemeOf→mutants
- activities toward near-neutral acidity→ThemeOf→extended
- activities toward near-neutral acidity→ThemeOf→mutants
- activities toward near-neutral acidity→ThemeOf→GadB
|
88 |
28390025 |
10168 |
In addition, the Fourier transform infrared spectrophotometer data showed that functional groups such as C-H, O-H, C=O, and C-O-C which possibly associated with Pb2+ binding were mainly presented in the suspended solid portion of IC. |
- C-O-C→CauseOf→associated
- C-O-C→CauseOf→presented
- associated→CauseOf→presented
- presented→CauseOf→associated
|
89 |
28399167 |
2033 |
Biochemically, the E. sibiricum 255-15 GtfC is very similar to L. reuteri GtfB, both cleaving (alpha1 4) linkages and introducing (alpha1 6) linkages in linear chains. |
- GtfC→ThemeOf→introducing
- GtfC→ThemeOf→alpha1 6
- GtfC→ThemeOf→cleaving
- alpha1 6→ThemeOf→introducing
- alpha1 6→ThemeOf→GtfC
- alpha1 6→ThemeOf→cleaving
- alpha1 4) linkages→ThemeOf→introducing
- cleaving→ThemeOf→alpha1 4) linkages
- alpha1 4) linkages→ThemeOf→GtfC
- cleaving→CauseOf→introducing
- alpha1 4) linkages→ThemeOf→cleaving
- cleaving→ThemeOf→GtfC
- GtfC→ThemeOf→alpha1 4) linkages
- cleaving→ThemeOf→alpha1 6
|
90 |
28399167 |
2039 |
Instead of forming linear (alpha1 6) glucan chains, this enzyme was found to convert amylose into a branched and high molecular mass alpha-glucan with alternating (alpha1 4) and (alpha1 6) linkages. |
- alpha1 6) linkages→CauseOf→convert
- alpha1 6) linkages→ThemeOf→amylose
- alpha1 4→CauseOf→convert
- alpha1 4→ThemeOf→amylose
- amylose→ThemeOf→alpha1 6) linkages
- amylose→ThemeOf→alpha1 4
- amylose→ThemeOf→convert
|
91 |
28399167 |
2052 |
The PCR primers used for amplifying the gtfD gene incorporated 5' extensions (in bold) to facilitate the ligation-independent (LIC) cloning and were: PbF (5 ' CAGGGACCCGGTGCGGAAAGCAATGCGAAAGG 3') and PbR (5 ' CGAGGAGAAGCCCGGTTAATTGCTAAACCGTCTTAATGCTTTATTC 3'). |
- gtfD→ThemeOf→PbR
- PbR→ThemeOf→gtfD
|
92 |
28399167 |
2078 |
One-dimensional 500-MHz 1H NMR spectra were recorded at a 4 000 Hz spectral width and 16k complex points, using a WET1D pulse to suppress the HOD signal. |
- WET1D→ThemeOf→HOD signal
- HOD signal→ThemeOf→suppress
- HOD signal→ThemeOf→WET1D
- WET1D→CauseOf→suppress
|
93 |
28399167 |
2148 |
In accordance with its non-permuted domain organization, the order of these four conserved regions in P. beijingensis GtfD and other GtfD-like proteins is I-II-III-IV, instead of the permuted order II-III-IV-I characteristic of GH70 glucansucrases and GtfB-like 4,6-alpha-GTases. |
- GtfD→ThemeOf→I-II-III-IV
- GtfB-like→ThemeOf→I-II-III-IV
- GH70→ThemeOf→I-II-III-IV
- I-II-III-IV→ThemeOf→GtfD
- I-II-III-IV→ThemeOf→GtfB-like
- I-II-III-IV→ThemeOf→GH70
|
94 |
28399167 |
2149 |
Among these seven residues, the nucleophile, the general acid/base and the transition state stabilizer of the catalytic triad were identified as Asp409, Glu442 and Asp512 in P. beijingensis GtfD (P. beijingensis GtfD numbering is used throughout unless indicated otherwise), respectively. |
- GtfD→ThemeOf→Glu442
- GtfD→ThemeOf→Asp512
- Asp409→ThemeOf→GtfD
- Glu442→ThemeOf→GtfD
- Asp512→ThemeOf→GtfD
- GtfD→ThemeOf→Asp409
|
95 |
28399167 |
2152 |
Of note is the presence of a Tyr in GtfB, GtfC and GtfD proteins replacing the subsite +1/+2 Trp residue conserved in almost all GSs (W1065 in GTF180-DeltaN). |
- GtfC→ThemeOf→Tyr
- GtfD→ThemeOf→W1065
- W1065→ThemeOf→GtfB
- GtfD→ThemeOf→Tyr
- W1065→ThemeOf→GtfC
- W1065→CauseOf→replacing
- W1065→ThemeOf→GtfD
- GtfB→ThemeOf→replacing
- Tyr→ThemeOf→GtfB
- GtfB→ThemeOf→W1065
- Tyr→ThemeOf→GtfC
- GtfB→ThemeOf→Tyr
- Tyr→CauseOf→replacing
- GtfC→ThemeOf→replacing
- Tyr→ThemeOf→GtfD
- GtfC→ThemeOf→W1065
- GtfD→ThemeOf→replacing
|
96 |
28399167 |
2153 |
A conserved Tyr is also present in the Lactobacillus fermentum GtfB active on (alpha1 4 glucans), but displaying (alpha1 3) linkage specificity suggesting that this residue may be considered a "sequence fingerprint" of GH70 proteins active on starch and maltodextrins. |
- GtfB→ThemeOf→Tyr
- Tyr→ThemeOf→GtfB
|
97 |
28399167 |
2209 |
After treatment with pullulanase, the P. beijingensis GtfD and the A. chroococcum GtfD products were degraded into smaller oligosaccharides, reflecting the presence of alternating (alpha1 6)/(alpha1 4), and (alpha1 4,6) branching points in these polymers. |
- degraded→CauseOf→presence
- presence→CauseOf→degraded
- alpha1 4,6→CauseOf→degraded
- alpha1 4,6→CauseOf→presence
|
98 |
28399167 |
2216 |
Compared with the A. chroococcum GtfD product the linear (alpha1 4)-linked sequences are longer in the P. beijingensis GtfD HMM polymer (up to DP6 in the model) and even longer in the P. beijingensis GtfD LMM polymer (up to DP8 in the model). |
- P. beijingensis→CauseOf→longer
- P. beijingensis→CauseOf→longer
- longer→CauseOf→longer
- longer→CauseOf→longer
|
99 |
28399167 |
2247 |
Whereas most of the digestible fraction of the A. chroococcum GtfD-treated starch was hydrolyzed to glucose after 20 min, the rate of hydrolysis for P. beijingensis GtfD-treated starch continually increased over the 120 min of simulated intestinal digestion. |
- GtfD-treated→ThemeOf→rate
- hydrolysis→ThemeOf→GtfD-treated
- hydrolysis→ThemeOf→increased
- rate→ThemeOf→GtfD-treated
- rate→ThemeOf→increased
- GtfD-treated→CauseOf→increased
- GtfD-treated→ThemeOf→hydrolysis
|
100 |
28399996 |
10174 |
In particular, esters, associated with fruity and floral notes, were positively correlated to L. paracollinoides, L. acidipiscis, and P. parvulus species. |
- L. acidipiscis→CauseOf→correlated
|
101 |
28414739 |
2339 |
Here, an effort was made to assess whether any variations in these cell surface-related proteins can define the ecological niche preference of each individual L. ruminis strain. |
- variations→CauseOf→define
- ecological niche preference→ThemeOf→define
- ecological niche preference→ThemeOf→variations
- variations→ThemeOf→ecological niche preference
|
102 |
28414739 |
2344 |
Here, it might be envisioned that active expression of the core gene annotated as fibronectin-binding protein (Fbp) (GRL1172_498, HMPREF0542_10570, LRC_RS05075, LRN_0851, PEL65_1842, PEL66_466, P869_04425, LRU_00261, and LRP_1613) might contribute to the gut autochthony of the various L. ruminis strains. |
- LRP_1613→ThemeOf→gut autochthony
- gut autochthony→ThemeOf→GRL1172_498
- HMPREF0542_10570→CauseOf→contribute
- PEL65_1842→CauseOf→contribute
- gut autochthony→ThemeOf→PEL66_466
- HMPREF0542_10570→ThemeOf→gut autochthony
- PEL65_1842→ThemeOf→gut autochthony
- gut autochthony→ThemeOf→LRP_1613
- P869_04425→CauseOf→contribute
- LRN_0851→CauseOf→contribute
- gut autochthony→ThemeOf→PEL65_1842
- P869_04425→ThemeOf→gut autochthony
- LRN_0851→ThemeOf→gut autochthony
- gut autochthony→ThemeOf→LRN_0851
- GRL1172_498→CauseOf→contribute
- LRU_00261→CauseOf→contribute
- gut autochthony→ThemeOf→LRU_00261
- GRL1172_498→ThemeOf→gut autochthony
- LRU_00261→ThemeOf→gut autochthony
- gut autochthony→ThemeOf→LRC_RS05075
- PEL66_466→CauseOf→contribute
- gut autochthony→ThemeOf→contribute
- LRC_RS05075→CauseOf→contribute
- PEL66_466→ThemeOf→gut autochthony
- gut autochthony→ThemeOf→HMPREF0542_10570
- LRC_RS05075→ThemeOf→gut autochthony
- LRP_1613→CauseOf→contribute
- gut autochthony→ThemeOf→P869_04425
|
103 |
28414739 |
2364 |
Further, we noticed that this shortened LrpB primary structure results from an insertion of two adenines along the lrpB coding sequence, thus producing a reading-frameshift change. |
- lrpB→ThemeOf→producing
- LrpB→ThemeOf→reading-frameshift change
- lrpB→ThemeOf→insertion
- LrpB→ThemeOf→producing
- reading-frameshift change→ThemeOf→lrpB
- LrpB→ThemeOf→insertion
- reading-frameshift change→ThemeOf→producing
- reading-frameshift change→ThemeOf→insertion
- reading-frameshift change→ThemeOf→LrpB
- insertion→ThemeOf→lrpB
- insertion→ThemeOf→reading-frameshift change
- insertion→CauseOf→producing
- lrpB→ThemeOf→reading-frameshift change
- insertion→ThemeOf→LrpB
|
104 |
28414739 |
2365 |
Relatedly, it is worth mentioning we had previously observed that for the DPC 6832-sourced LrpB pilin, there is a shift in the reading-frame of its deduced primary structure, which we found is due to a missing cytosine in a serine codon. |
- LrpB→ThemeOf→missing
- LrpB→ThemeOf→shift
- missing→ThemeOf→LrpB
- missing→CauseOf→shift
|
105 |
28615683 |
2494 |
L. gallinarum DSM 10532, L. crispatus DSM 20584 and P. cellicola DSM 17757 were all found to harbour a NisC homolog, despite not being identified by BAGEL. |
- NisC→ThemeOf→DSM 20584
- DSM 20584→ThemeOf→NisC
- DSM 20584→CauseOf→harbour
- DSM→CauseOf→NisC
- DSM→CauseOf→harbour
- DSM→CauseOf→NisC
- DSM→CauseOf→harbour
- NisC→CauseOf→DSM
- NisC→CauseOf→DSM
- NisC→ThemeOf→harbour
|
106 |
28615683 |
2508 |
Whilst the operons in O. kitaharae DSM 17330 and L. intestinalis DSM 6629 appear to be complete, the L. crispatus DSM 20584 TOMM operon appears to lack a structural gene, however, the structural gene for similar operons has been found to be some distance from the SagBCD homologs previously. |
- SagBCD→ThemeOf→DSM 20584
- SagBCD→ThemeOf→lack
- DSM 20584→ThemeOf→SagBCD
- DSM 20584→ThemeOf→lack
|
107 |
28615683 |
2509 |
Of these three strains, L. crispatus DSM 20584 was the only one found to display antimicrobial activity; the source of such activity, however, remains unclear. |
- DSM 20584→ThemeOf→antimicrobial activity
- antimicrobial activity→ThemeOf→DSM 20584
|
108 |
28615683 |
2518 |
While the source of antimicrobial activity from C. maltaromaticum DSM20342 is unclear, C. maltaromaticum DSM 20722 was found to produce the class IIa bacteriocin cbnB2 and cbnBM1, the class IId bacteriocin cbnX was also produced by the strain. |
- DSM 20722→ThemeOf→cbnBM1
- DSM 20722→ThemeOf→cbnB2
- cbnBM1→ThemeOf→produce
- cbnBM1→ThemeOf→DSM 20722
- cbnB2→ThemeOf→produce
- cbnB2→ThemeOf→DSM 20722
- DSM 20722→CauseOf→produce
|
109 |
28615683 |
2520 |
Such bacteriocins tend to contain conserved GxxxG or AxxxA motifs which are responsible for close helix interactions between each bacteriocin peptide. |
- AxxxA motifs→CauseOf→contain
- GxxxG→CauseOf→contain
|
110 |
28615683 |
2531 |
Leuconostoc mesenteroides TK41401 has also been shown to produce leucocyclicin Q, a subgroup I circular bacteriocin. |
- leucocyclicin→ThemeOf→Leuconostoc
- TK41401→ThemeOf→Leuconostoc
- Leuconostoc→ThemeOf→leucocyclicin
- Leuconostoc→ThemeOf→TK41401
|
111 |
28615683 |
2540 |
L. equicursoris DSM 19284 is also highly likely to produce a novel class IId bacteriocin (equicursorin). |
- DSM 19284→CauseOf→produce
|
112 |
28615683 |
2550 |
Two L. amylovorus strains (DSM 16698 and DSM 20531) were shown to produce a helveticin homolog. |
- DSM 16698→CauseOf→produce
- DSM 16698→ThemeOf→helveticin homolog
- helveticin homolog→ThemeOf→produce
- helveticin homolog→ThemeOf→DSM 16698
- helveticin homolog→ThemeOf→DSM 20531
- DSM 20531→CauseOf→produce
- DSM 20531→ThemeOf→helveticin homolog
|
113 |
28615683 |
2591 |
paracasei DSM 5622 was grown overnight in MRS broth. |
- DSM 5622→ThemeOf→paracasei
- paracasei→ThemeOf→DSM 5622
|
114 |
28651019 |
2626 |
Comparison of CRISPR arrays of L. pentosus MP-10 and phylogenetically related lactobacilli, such as L. plantarum, L. paraplantarum and L. brevis (available in CRISPRs database), showed that one DR consensus (5 -GTCTTGAATAGTAGTCATATCAAACAGGTTTAGAAC-3 ) or its reverse complement was shared by all L. pentosus and L. plantarum strains except L. pentosus IG1 (Table 1). |
- 5 -GTCTTGAATAGTAGTCATATCAAACAGGTTTAGAAC-3→CauseOf→shared
|
115 |
28651019 |
2631 |
For example in CR1, we suggested that the primary invasion was accomplished by Haematospirillum jordaniae H5569 Plasmid unnamed 2, then by other short sequences followed by Borrelia miyamotoi FR64b Plasmid_07, and Clostridium taeniosporum 1/k Plasmid pCt3 (Table 2). |
- Haematospirillum jordaniae H5569→ThemeOf→primary
- Haematospirillum jordaniae H5569→ThemeOf→FR64b
- primary→ThemeOf→Haematospirillum jordaniae H5569
- primary→ThemeOf→FR64b
- FR64b→ThemeOf→Haematospirillum jordaniae H5569
- FR64b→ThemeOf→primary
|
116 |
28651019 |
2639 |
Among the eight genes of CRISPR2, five of them were shared by both L. pentosus strains (MP-10 and KCA1): cas1, cas2, cas3, casC, cas5 and cse3 (Fig 3B); however, both unique genes for L. pentosus MP-10 (XX999_01589 gene ID, or cse1_Lpe gene, and XX999_01590 gene ID, or cse2_Lpe gene) corresponded to CRISPR-associated protein (KCA1_RS06550) and cse2/casB (KCA1_RS06555) in L. pentosus KCA1. |
- KCA1_RS06550→ThemeOf→cse2/casB
- cse2/casB→ThemeOf→KCA1_RS06555
- cse2/casB→ThemeOf→KCA1_RS06550
- KCA1_RS06555→ThemeOf→cse2/casB
|
117 |
29942291 |
2696 |
Based on the presence/absence patterns of these genomic traits, strain ACA-DC 1533 seems to be more related to strain JCM 10692T than strain KCTC 13900. |
- ACA-DC 1533→CauseOf→related
|
118 |
29942291 |
2699 |
Nonetheless, strain KCTC 13900 has a prophage that is absent from strains ACA-DC 1533 and JCM 10692T. |
- KCTC 13900→CauseOf→absent
|
119 |
29942291 |
2709 |
Moreover, L. acidipiscis has also been found in vinegar and soy sauce, where it is considered to be a spoiler. |
- L. acidipiscis→CauseOf→found
|
120 |
29942291 |
2724 |
Weissella kandleri DSM 20593T and Lactobacillus delbrueckii subsp. |
- DSM 20593T→ThemeOf→Weissella
- DSM 20593T→ThemeOf→Lactobacillus
- Weissella→ThemeOf→DSM 20593T
- Lactobacillus→ThemeOf→DSM 20593T
|
121 |
29942291 |
2760 |
Core-genome analysis revealed that the motility operon is also present in strain JCM 10692T and flanked by the same genes (Supplementary Table S4B). |
- JCM→ThemeOf→motility
- motility→ThemeOf→JCM
|
122 |
29942291 |
2764 |
It is interesting to note that GI 5 is present in strains ACA-DC 1533 and JCM 10692T but absent in KCTC 13900. |
- ACA-DC→CauseOf→absent
- ACA-DC→ThemeOf→GI 5
- GI 5→ThemeOf→absent
- GI 5→ThemeOf→ACA-DC
|
123 |
29942291 |
2769 |
Furthermore, strain KCTC 13900 seems to have an intact prophage region (from now on called phage 3) of 40.8 Kbp length related also to Lactobacillus phages (Supplementary Table S6A). |
- KCTC 13900→ThemeOf→Kbp
- Kbp→ThemeOf→KCTC 13900
|
124 |
29942291 |
2771 |
BLASTN analysis of all the spacers identified in these three CRISPR-Cas systems showed that several of them, namely spacers 9, 11, 13, 14, 19, 20, and 21 in CRISPR 1 and spacers 5, 14 and 21 in CRISPR 2 had hits in the Lactobacillus plantarum virulent phage phiJL-1. |
- spacers→CauseOf→Lactobacillus plantarum
- spacers→CauseOf→hits
- spacers→CauseOf→Lactobacillus plantarum
- Lactobacillus plantarum→ThemeOf→hits
- Lactobacillus plantarum→CauseOf→spacers
- Lactobacillus plantarum→CauseOf→spacers
- spacers→CauseOf→hits
|
125 |
29942291 |
2772 |
Moreover, spacers 22 and 26 in CRISPR 2 had hits in L. salivarius plasmids. |
- spacers→CauseOf→hits
|
126 |
29942291 |
2774 |
Thus, it could be hypothesized that strain KCTC 13900 has also been exposed to phage 1 or phage 2 but it was able to acquire immunity through its CRISPR-Cas systems. |
- CRISPR-Cas→ThemeOf→acquire
- immunity→ThemeOf→acquire
- KCTC 13900→CauseOf→acquire
|
127 |
29942291 |
2803 |
Indeed, the carbohydrate fermentation profile of L. acidipiscis ACA-DC 1533 using the API 50 CHL stripes (Supplementary Table S12) and L. salivarius UCC118 showed that the two strains were able to ferment a number of carbohydrates of plant origin, i.e., L-arabinose, D-ribose, D-cellobiose, D-trehalose, D-glucose, D-fructose, D-mannitol, D-sorbitol, and D-saccharose. |
- D-fructose→ThemeOf→D-sorbitol
- D-trehalose→ThemeOf→ferment
- L-arabinose→ThemeOf→D-fructose
- D-glucose→ThemeOf→L-arabinose
- D-saccharose→ThemeOf→CHL
- CHL→ThemeOf→D-fructose
- D-fructose→ThemeOf→L-arabinose
- D-trehalose→ThemeOf→D-saccharose
- L-arabinose→ThemeOf→D-trehalose
- D-glucose→ThemeOf→ferment
- D-saccharose→ThemeOf→D-fructose
- CHL→ThemeOf→D-trehalose
- D-fructose→ThemeOf→D-glucose
- D-sorbitol→ThemeOf→CHL
- L-arabinose→ThemeOf→D-sorbitol
- D-glucose→ThemeOf→D-saccharose
- D-saccharose→ThemeOf→D-trehalose
- CHL→ThemeOf→D-sorbitol
- D-fructose→ThemeOf→ferment
- D-sorbitol→ThemeOf→D-fructose
- L-arabinose→ThemeOf→D-glucose
- ferment→ThemeOf→CHL
- D-saccharose→ThemeOf→D-sorbitol
- CHL→ThemeOf→L-arabinose
- D-fructose→ThemeOf→D-saccharose
- D-sorbitol→ThemeOf→D-trehalose
- L-arabinose→ThemeOf→ferment
- ferment→ThemeOf→D-fructose
- D-saccharose→ThemeOf→L-arabinose
- CHL→ThemeOf→D-glucose
- D-trehalose→ThemeOf→CHL
- D-sorbitol→ThemeOf→L-arabinose
- L-arabinose→ThemeOf→D-saccharose
- ferment→ThemeOf→D-trehalose
- D-saccharose→ThemeOf→D-glucose
- CHL→ThemeOf→ferment
- D-trehalose→ThemeOf→D-fructose
- D-sorbitol→ThemeOf→D-glucose
- D-glucose→ThemeOf→CHL
- ferment→ThemeOf→D-sorbitol
- D-saccharose→ThemeOf→ferment
- CHL→ThemeOf→D-saccharose
- D-trehalose→ThemeOf→D-sorbitol
- D-sorbitol→ThemeOf→ferment
- D-glucose→ThemeOf→D-fructose
- ferment→ThemeOf→L-arabinose
- D-fructose→ThemeOf→CHL
- D-trehalose→ThemeOf→L-arabinose
- D-sorbitol→ThemeOf→D-saccharose
- D-glucose→ThemeOf→D-trehalose
- ferment→ThemeOf→D-glucose
- D-fructose→ThemeOf→D-trehalose
- D-trehalose→ThemeOf→D-glucose
- L-arabinose→ThemeOf→CHL
- D-glucose→ThemeOf→D-sorbitol
- ferment→ThemeOf→D-saccharose
|
128 |
29942291 |
2807 |
Similarly to what has been reported previously for L. salivarius UCC118 and according to our analysis, part of the glycobiome of both L. salivarius and L. acidipiscis ACA-DC 1533 resides in their plasmids. |
- UCC118→ThemeOf→ACA-DC 1533
- ACA-DC 1533→ThemeOf→glycobiome
- ACA-DC 1533→ThemeOf→UCC118
- glycobiome→ThemeOf→UCC118
- glycobiome→ThemeOf→ACA-DC 1533
- UCC118→ThemeOf→glycobiome
|
129 |
29942291 |
2815 |
Interestingly, the Opp operon is present in L. acidipiscis ACA-DC 1533 and JCM 10692T but absent in KCTC 13900. |
- ACA-DC→CauseOf→absent
- ACA-DC→ThemeOf→Opp operon
- Opp operon→ThemeOf→ACA-DC
- Opp operon→ThemeOf→absent
- Opp operon→ThemeOf→JCM
- JCM→CauseOf→absent
- JCM→ThemeOf→Opp operon
|
130 |
29942291 |
2817 |
However, it is worth noting that the DppD protein of L. acidipiscis KCTC 13900 is a potential pseudogene inactivating the entire Dpp system which deserves further investigation. |
- KCTC→ThemeOf→Dpp system
- KCTC→CauseOf→inactivating
- Dpp system→ThemeOf→KCTC
- Dpp system→ThemeOf→inactivating
|
131 |
29942291 |
2822 |
The higher number of IS elements in the chromosome of L. acidipiscis ACA-DC 1533 may suggest a higher potential for genome plasticity compared to the L. salivarius UCC118 and L. ruminis ATCC 27782 chromosome. |
- higher→CauseOf→higher
- higher→CauseOf→higher
- ACA-DC 1533→CauseOf→higher
- ACA-DC 1533→CauseOf→higher
|
132 |
29942291 |
2828 |
On the other hand, TFs contain TRs, OCSs, RRs and SFs. |
- RRs→ThemeOf→TRs
- RRs→ThemeOf→OCSs
- TRs→ThemeOf→RRs
- OCSs→ThemeOf→RRs
|
133 |
29942291 |
2848 |
Furthermore, acetoin, which was produced by L. acidipiscis ACA-DC 1533, can be formed from pyruvate using two alternative pathways. |
- ACA-DC 1533→ThemeOf→acetoin
- acetoin→ThemeOf→ACA-DC 1533
|
134 |
29942291 |
2849 |
Pyruvate, which derives from glycolysis, is converted into a-acetolactate by alpha-acetolactate synthase (LAC1533_RS03500). |
- LAC1533_RS03500→ThemeOf→a-acetolactate
- a-acetolactate→ThemeOf→LAC1533_RS03500
|
135 |
29942291 |
2851 |
Finally, diacetyl/acetoin dehydrogenase (LAC1533_RS01560) catalyzes the conversion of diacetyl to acetoin. |
- LAC1533_RS01560→ThemeOf→conversion of diacetyl to acetoin
- conversion of diacetyl to acetoin→ThemeOf→LAC1533_RS01560
|
136 |
29942291 |
2854 |
Given that L. acidipiscis ACA-DC 1533, along with L. rennini, were the only species found in Kopanisti cheese, the production of the above mentioned metabolites by L. acidipiscis ACA-DC 1533 via amino acid catabolism may contribute to the characteristic piquant flavor of Kopanisti cheese. |
- piquant flavor→CauseOf→L. acidipiscis ACA-DC 1533
- L. acidipiscis ACA-DC 1533→CauseOf→contribute
- L. acidipiscis ACA-DC 1533→CauseOf→piquant flavor
|
137 |
30013519 |
2979 |
Interestingly, L. paracasei NFBC338 failed to produce futcin which was produced by E. coli. |
- NFBC338→CauseOf→failed
|
138 |
30013519 |
2982 |
Interestingly, pediocin 20336a and hordeiocin inhibited the growth of a larger number of the indicators tested than pediocin PA-1. |
- growth→CauseOf→pediocin
- hordeiocin→CauseOf→inhibited
- pediocin→CauseOf→inhibited
- pediocin→CauseOf→growth
|
139 |
30013519 |
3024 |
Futcin has a tryptophan residue at position 33 in the mature peptide; however this is not predicted to be involved in the stabilization of the hairpin fold; acidicin lacks a stabilizing terminal tryptophan residue altogether. |
- acidicin→CauseOf→lacks
|
140 |
30013519 |
3026 |
Structural differences between these bacteriocins may not only affect their inhibitory activity but also may affect the ability of the pediocin transporter to secrete these bacteriocins. |
- Structural→CauseOf→affect
- affect→CauseOf→affect
- affect→CauseOf→affect
- Structural→CauseOf→affect
|
141 |
30013519 |
3031 |
Pediocin, pediocin 20336a, rennicin A and rennicin B display between 84% and 93% homology to each other. |
- pediocin→ThemeOf→rennicin A
- pediocin→ThemeOf→rennicin B
- rennicin A→ThemeOf→pediocin
- rennicin B→ThemeOf→pediocin
|
142 |
30013519 |
3033 |
Two amino acid substitutions in rennicin B may explain this as they occur in important structural regions for the bacteriocin. |
- substitutions→ThemeOf→rennicin B
- substitutions→ThemeOf→bacteriocin
- rennicin B→ThemeOf→substitutions
- bacteriocin→ThemeOf→substitutions
|
143 |
30013519 |
3034 |
The Gly29-Ser29 substitution is found in the C-terminal alpha-helix of the peptide which is involved in membrane insertion. |
- membrane insertion→ThemeOf→Gly29-Ser29
- membrane insertion→ThemeOf→involved
- found→CauseOf→involved
- Gly29-Ser29→ThemeOf→membrane insertion
- Gly29-Ser29→CauseOf→found
- Gly29-Ser29→CauseOf→involved
- involved→CauseOf→found
- membrane insertion→ThemeOf→found
|
144 |
30013519 |
3035 |
A Gly36-Ser36 substitution occurs in a double glycine motif which follows the alpha-helix. |
- Gly36-Ser36→CauseOf→occurs
|
145 |
30013519 |
3036 |
This motif may provide the flexibility for the C-terminal tail to fold back upon the helix (Fimland et al.,), this flexibility may be lost due to the substitution with a larger serine residue. |
- substitution→CauseOf→lost
|
146 |
30013519 |
3046 |
While duplications and false positives are likely to occur in these datasets, even if a small proportion of these genes can be analyzed using this expression system it represents a significant extension of the class II bacteriocins. |
- duplications→ThemeOf→bacteriocin
- bacteriocin→ThemeOf→duplications
|
147 |
30628884 |
10188 |
The predominant fatty acids were C16 : 0, C18 : 1 omega9c and summed feature 8. |
- C16→ThemeOf→summed feature
- C18→ThemeOf→summed feature
- summed feature→ThemeOf→C16
- summed feature→ThemeOf→C18
|
148 |
30984126 |
3126 |
Furthermore, we analyzed the 16S rDNA gene polymorphisms (SNPs) of the same dominant species (Lactobacillus plantarum and Lactobacillus fermentum) in two fermented environments, which showed that most of the mutations occurred in fermented vegetables and that fermenting environment might be the major factor for these mutations. |
- mutations→ThemeOf→16S rDNA
- 16S rDNA→ThemeOf→mutations
|
149 |
30984126 |
3146 |
We identified the dominant bacterial genera in samples (Figure 3), which included Lactobacillus, Pediococcus, Weissella, Bacillus, Lactococcus, Pseudomonas, Acinetobacter, Rummeliibacillus, Enterobacter, Enterococcus and Sphingomonas. |
- Weissella→ThemeOf→Sphingomonas
- Pediococcus→ThemeOf→Sphingomonas
- Pseudomonas→ThemeOf→Pediococcus
- Weissella→ThemeOf→Pediococcus
- Pediococcus→ThemeOf→Weissella
- Lactobacillus→ThemeOf→Weissella
- Lactococcus→ThemeOf→Weissella
- Weissella→ThemeOf→Lactobacillus
- Pediococcus→ThemeOf→Lactobacillus
- Lactobacillus→ThemeOf→Pediococcus
- Lactococcus→ThemeOf→Pediococcus
- Weissella→ThemeOf→Enterobacter
- Pediococcus→ThemeOf→Enterobacter
- Enterobacter→ThemeOf→Weissella
- Rummeliibacillus→ThemeOf→Weissella
- Weissella→ThemeOf→Bacillus
- Pediococcus→ThemeOf→Bacillus
- Enterobacter→ThemeOf→Pediococcus
- Rummeliibacillus→ThemeOf→Pediococcus
- Weissella→ThemeOf→Acinetobacter
- Pediococcus→ThemeOf→Acinetobacter
- Bacillus→ThemeOf→Weissella
- Enterococcus→ThemeOf→Weissella
- Weissella→ThemeOf→Pseudomonas
- Pediococcus→ThemeOf→Pseudomonas
- Bacillus→ThemeOf→Pediococcus
- Enterococcus→ThemeOf→Pediococcus
- Weissella→ThemeOf→Lactococcus
- Pediococcus→ThemeOf→Lactococcus
- Acinetobacter→ThemeOf→Weissella
- Sphingomonas→ThemeOf→Weissella
- Weissella→ThemeOf→Rummeliibacillus
- Pediococcus→ThemeOf→Rummeliibacillus
- Acinetobacter→ThemeOf→Pediococcus
- Sphingomonas→ThemeOf→Pediococcus
- Weissella→ThemeOf→Enterococcus
- Pediococcus→ThemeOf→Enterococcus
- Pseudomonas→ThemeOf→Weissella
|
150 |
30984126 |
3169 |
We analyzed the SNPs of Lactobacillus plantarum and Lactobacillus fermentum and found that most of the mutations occurred in fermented vegetables. |
- mutations→CauseOf→occurred
|
151 |
31481601 |
3310 |
Within a species, an innovative mutation is able to purge diversity through a vertical sweep, but this process cannot occur between different species. |
- purge diversity→ThemeOf→mutation
- purge diversity→ThemeOf→nov
- mutation→ThemeOf→purge diversity
- mutation→ThemeOf→nov
- nov→ThemeOf→purge diversity
- nov→ThemeOf→mutation
|
152 |
31481601 |
3326 |
However, the publication that introduced the species L. amylotrophicus clearly shows that strain DSM 20534 is relatively distant from strain DSM 20533 based on a comparison of pheS and rpoA gene sequences. |
- DSM 20534→CauseOf→distant
|
153 |
31528033 |
3190 |
LAB are also called lantibiotics because they contain modified post-translational amino acids, such as lanthionine (two alanines linked by sulfur), beta-methyl-lanthionine, dehydroalanine, and dehydrobutyrine, which are short peptides (19-13 amino acids) and are active in Gram-positive bacteria. |
- Gram-positive bacteria→CauseOf→lanthionine
- lanthionine→CauseOf→Gram-positive bacteria
- lanthionine→CauseOf→active
- dehydrobutyrine→CauseOf→active
- dehydroalanine→CauseOf→active
|
154 |
31936280 |
3698 |
The majority of animal-derived strains could poorly utilize lactose, sucrose, raffinose, and FOS, except for FYNLJ31L4. |
- raffinose→ThemeOf→FYNLJ31L4
- raffinose→ThemeOf→FOS
- FYNLJ31L4→ThemeOf→raffinose
- FYNLJ31L4→ThemeOf→FOS
- FOS→ThemeOf→raffinose
- FOS→ThemeOf→FYNLJ31L4
|
155 |
31936280 |
3699 |
Among the 81 strains, only FYNLJ31L4 exhibited the ability to utilize D-ribose, D-xylose and sodium gluconate, while it cannot take advantage of other sugars such as cellobiose, D fructose, and D mannose that are utilized by remaining 80 L. ruminis strains. |
- FYNLJ31L4→ThemeOf→D-ribose
- FYNLJ31L4→ThemeOf→sodium gluconate
- sodium gluconate→ThemeOf→D-ribose
- sodium gluconate→ThemeOf→FYNLJ31L4
- D-ribose→ThemeOf→FYNLJ31L4
- D-ribose→ThemeOf→sodium gluconate
|
156 |
31936280 |
3713 |
Insertion of the transposase in the raffinose operon of L. ruminis may affect its normal transcription leading to the inability to utilize raffinose (Figure 5D). |
- Insertion→CauseOf→affect
|
157 |
31936280 |
3726 |
Only L. ruminis DPC6832 contained a subtype I-B CRISPR/Cas system. |
- DPC6832→CauseOf→contained
|
158 |
31936280 |
3763 |
Accordingly, L. ruminis strains from human represented a broad variability in GH enzymes which would be corresponding to dietary diversity of human hosts. |
- GH enzymes→ThemeOf→variability
- variability→ThemeOf→GH enzymes
|
159 |
31936280 |
3766 |
Heretofore, the well-known bacteriocin produced by L. ruminis belonged to class IIa bacteriocin, in which L. ruminis ATCC 27782 generated a Class II pediocin-like bacteriocin. |
- bacteriocin→ThemeOf→generated
- bacteriocin→ThemeOf→ATCC
- bacteriocin→ThemeOf→generated
- bacteriocin→ThemeOf→ATCC
- bacteriocin→ThemeOf→generated
- ATCC→ThemeOf→bacteriocin
- ATCC→ThemeOf→bacteriocin
- ATCC→ThemeOf→bacteriocin
- ATCC→CauseOf→generated
- bacteriocin→ThemeOf→ATCC
|
160 |
32010538 |
3405 |
B. subtilis bs-30 and bs-34 also possessed high IL-22-inducing ability. |
- bs-34→ThemeOf→IL-22-inducing
- bs-34→CauseOf→high
- bs-30→ThemeOf→IL-22-inducing
- bs-30→CauseOf→high
- IL-22-inducing→ThemeOf→bs-34
- IL-22-inducing→ThemeOf→bs-30
- IL-22-inducing→ThemeOf→high
|
161 |
32010538 |
3425 |
Because administration of IL-22 decreased TEWL and neutralization of IL-22 increased TEWL, the improvement of skin barrier function caused by B. coagulans sc-09 uptake may be attributed to IL-22. |
- TEWL→ThemeOf→skin barrier function
- neutralization→CauseOf→increased
- increased→CauseOf→decreased
- TEWL→ThemeOf→neutralization
- neutralization→CauseOf→improvement
- increased→CauseOf→improvement
- TEWL→ThemeOf→decreased
- decreased→CauseOf→increased
- improvement→CauseOf→decreased
- TEWL→ThemeOf→TEWL
- decreased→CauseOf→improvement
- improvement→CauseOf→increased
- skin barrier function→ThemeOf→TEWL
- TEWL→ThemeOf→increased
- TEWL→ThemeOf→skin barrier function
- skin barrier function→ThemeOf→neutralization
- TEWL→ThemeOf→improvement
- TEWL→ThemeOf→TEWL
- skin barrier function→ThemeOf→decreased
- neutralization→ThemeOf→skin barrier function
- TEWL→ThemeOf→neutralization
- skin barrier function→ThemeOf→TEWL
- neutralization→ThemeOf→TEWL
- TEWL→ThemeOf→decreased
- skin barrier function→ThemeOf→increased
- neutralization→CauseOf→decreased
- TEWL→ThemeOf→increased
- skin barrier function→ThemeOf→improvement
- neutralization→ThemeOf→TEWL
- TEWL→ThemeOf→improvement
|
162 |
32118050 |
3600 |
At the species level, L. acidipiscis was predominant bacteria for non-myopathy birds (68.16%) (Figure 3). |
- L. acidipiscis→ThemeOf→myopathy birds
- myopathy birds→ThemeOf→L. acidipiscis
|
163 |
32118050 |
3626 |
Elevated homocysteine is associated as marker for cardiovascular disease and can be atherogenic and thrombogenic. |
- homocysteine→ThemeOf→cardiovascular disease
- homocysteine→ThemeOf→Elevated
- cardiovascular disease→ThemeOf→Elevated
- cardiovascular disease→ThemeOf→homocysteine
- Elevated→ThemeOf→cardiovascular disease
- Elevated→ThemeOf→homocysteine
|
164 |
32184766 |
3787 |
The monosaccharide compositional analysis indicated that crude EPS-CS5, EPS-CS9, EPS-CS18, and EPS-CS20 contain similar monosaccharide compositions with different ratios. |
- EPS-CS20→ThemeOf→EPS-CS5
- EPS-CS5→ThemeOf→EPS-CS20
- EPS-CS5→ThemeOf→EPS-CS9
- EPS-CS5→ThemeOf→EPS-CS18
- EPS-CS9→ThemeOf→EPS-CS5
- EPS-CS18→ThemeOf→EPS-CS5
|
165 |
32184766 |
3873 |
For instance, a heavy metal transporter CzcA (DR994_03030) predicted in CS9 genome is responsible for the transport of heavy metal ions, and it shows 100% similarity to a gene of Streptococcus pneumoniae. |
- heavy→ThemeOf→transport of heavy metal ions
- heavy→ThemeOf→DR994_03030
- heavy→ThemeOf→CzcA
- DR994_03030→ThemeOf→transport of heavy metal ions
- DR994_03030→ThemeOf→heavy
- DR994_03030→ThemeOf→CzcA
- CzcA→ThemeOf→transport of heavy metal ions
- transport of heavy metal ions→ThemeOf→heavy
- CzcA→ThemeOf→heavy
- transport of heavy metal ions→ThemeOf→DR994_03030
- CzcA→ThemeOf→DR994_03030
- transport of heavy metal ions→ThemeOf→CzcA
|
166 |
32184766 |
3881 |
Therefore, it could be suggested that CS5, CS9, CS18, and CS20 do not contain any antibiotic resistance and that they do not cause antibiotic contamination when used as a food starter. |
- CS9→CauseOf→cause
- CS20→CauseOf→cause
- CS18→CauseOf→cause
- CS5→CauseOf→cause
|
167 |
32184766 |
3883 |
As can be seen from the results, S. thermophilus CS5, CS9, CS18, and CS20 are all sensitive to these 12 common antibiotics, which is consistent with the results of the genomic analysis. |
- CS18→CauseOf→sensitive
- CS20→ThemeOf→CS9
- CS20→CauseOf→sensitive
- CS5→ThemeOf→CS9
- CS5→CauseOf→sensitive
- CS9→ThemeOf→CS5
- CS9→ThemeOf→CS18
- CS9→ThemeOf→sensitive
- CS9→ThemeOf→CS20
- CS18→ThemeOf→CS9
|
168 |
32184766 |
3900 |
In summary, S. thermophilus CS5, CS9, CS18, and CS20 do not contain antibiotic resistance genes, virulence factors with significant pathogenicity, or plasmids that can replicate independently. |
- CS20→ThemeOf→CS5
- CS5→ThemeOf→CS20
- CS5→ThemeOf→CS9
- CS5→ThemeOf→CS18
- CS9→ThemeOf→CS5
- CS18→ThemeOf→CS5
|
169 |
32184766 |
3923 |
As CS18 and CS20 could utilize galactose, they could be used in the production of cheese in order to eliminate or reduce the adverse influences of galactose accumulation. |
- galactose→ThemeOf→CS20
- CS20→CauseOf→reduce
- CS20→ThemeOf→galactose
- galactose→ThemeOf→reduce
|
170 |
32184766 |
3942 |
The eps gene clusters determining the EPS biosynthesis were found in CS5, CS9, CS18, and CS20 (Figure 7A). |
- CS5→ThemeOf→eps
- CS20→ThemeOf→eps
- CS9→ThemeOf→eps
- eps→ThemeOf→CS5
- eps→ThemeOf→CS20
- eps→ThemeOf→CS9
|
171 |
32184766 |
3946 |
In addition, these eps clusters belonged to a common type and were found in some S. thermophilus strains, including ASCC1275, Sfi39, KLDS MS, MN-BM-A02, DGCC7710, C106, KLDS 3.1003, TH982, FI9186, and MTC310. |
- ASCC1275→ThemeOf→DGCC7710
- Sfi39→ThemeOf→MN-BM-A02
- Sfi39→ThemeOf→DGCC7710
- MN-BM-A02→ThemeOf→ASCC1275
- MN-BM-A02→ThemeOf→Sfi39
- DGCC7710→ThemeOf→ASCC1275
- DGCC7710→ThemeOf→Sfi39
- ASCC1275→ThemeOf→MN-BM-A02
|
172 |
32184766 |
3953 |
Therefore, it was speculated that the additional eps2A-eps2B could improve the EPS production. |
- eps2A-eps2B→ThemeOf→EPS production
- EPS production→ThemeOf→improve
- EPS production→ThemeOf→eps2A-eps2B
- eps2A-eps2B→CauseOf→improve
|
173 |
32184766 |
3956 |
These GTFs (DR994_01925, DR994_01930, DR994_01935, and DR994_01955) originated from Clostridium butyricum, Eubacteriaceae bacterium, Streptococcus equinus, and Lactococcus lactis, respectively. |
- DR994_01935→ThemeOf→GTFs
- DR994_01930→ThemeOf→GTFs
- GTFs→ThemeOf→DR994_01935
- GTFs→ThemeOf→DR994_01930
- GTFs→ThemeOf→DR994_01925
- GTFs→ThemeOf→DR994_01955
- DR994_01925→ThemeOf→GTFs
- DR994_01955→ThemeOf→GTFs
|
174 |
32184766 |
3957 |
DR994_01925 was predicted to belong to GTF family 2 which could transfer sugar from UDP-glucose, UDP-N-acetyl-galactosamine (UDP-GalNAc), or GDP-mannose to a range of substrates. |
- UDP-glucose→ThemeOf→UDP-N-acetyl-galactosamine
- UDP-N-acetyl-galactosamine→ThemeOf→GTF family 2
- DR994_01925→ThemeOf→GTF family 2
- UDP-glucose→ThemeOf→transfer
- UDP-N-acetyl-galactosamine→ThemeOf→transfer
- DR994_01925→ThemeOf→UDP-N-acetyl-galactosamine
- UDP-glucose→ThemeOf→sugar
- UDP-N-acetyl-galactosamine→ThemeOf→sugar
- DR994_01925→CauseOf→transfer
- UDP-glucose→ThemeOf→DR994_01925
- UDP-N-acetyl-galactosamine→ThemeOf→DR994_01925
- DR994_01925→ThemeOf→sugar
- GTF family 2→ThemeOf→UDP-glucose
- sugar→ThemeOf→UDP-glucose
- GTF family 2→ThemeOf→UDP-N-acetyl-galactosamine
- sugar→ThemeOf→GTF family 2
- GTF family 2→ThemeOf→transfer
- sugar→ThemeOf→UDP-N-acetyl-galactosamine
- GTF family 2→ThemeOf→sugar
- sugar→ThemeOf→transfer
- GTF family 2→ThemeOf→DR994_01925
- sugar→ThemeOf→DR994_01925
- UDP-glucose→ThemeOf→GTF family 2
- UDP-N-acetyl-galactosamine→ThemeOf→UDP-glucose
- DR994_01925→ThemeOf→UDP-glucose
|
175 |
32184766 |
3958 |
It was speculated that EPS-CS9 might contain rhamnose. |
- rhamnose→ThemeOf→EPS-CS9
- rhamnose→ThemeOf→contain
- EPS-CS9→ThemeOf→rhamnose
- EPS-CS9→CauseOf→contain
|
176 |
32184766 |
3959 |
DR994_01955, however, was found similar to galactosyl transferase CpsE which could catalyze the addition of galactose to an oligosaccharide precursor or to a lipid intermediate. |
- CpsE→ThemeOf→DR994_01955
- CpsE→ThemeOf→addition
- addition→ThemeOf→DR994_01955
- addition→ThemeOf→CpsE
- DR994_01955→ThemeOf→CpsE
- DR994_01955→ThemeOf→addition
|
177 |
32184766 |
3960 |
At the same time, a relatively rare galactofuranose transferase (DR994_01870) was found in CS9, which was detected only in S. thermophilus strains 488, DSM 20617, JIM8232, and TH1436. |
- DR994_01870→CauseOf→found
|
178 |
32184766 |
3980 |
The monosaccharide compositions of crude EPS-CS5, EPS-CS9, EPS-CS18, and EPS-CS20 were analyzed using HPLC. |
- monosaccharide compositions→ThemeOf→EPS-CS20
- EPS-CS9→ThemeOf→monosaccharide compositions
- EPS-CS9→ThemeOf→EPS-CS5
- EPS-CS5→ThemeOf→EPS-CS18
- EPS-CS5→ThemeOf→monosaccharide compositions
- EPS-CS18→ThemeOf→monosaccharide compositions
- EPS-CS5→ThemeOf→EPS-CS9
- EPS-CS18→ThemeOf→EPS-CS5
- EPS-CS5→ThemeOf→EPS-CS20
- monosaccharide compositions→ThemeOf→EPS-CS18
- EPS-CS20→ThemeOf→monosaccharide compositions
- monosaccharide compositions→ThemeOf→EPS-CS9
- EPS-CS20→ThemeOf→EPS-CS5
- monosaccharide compositions→ThemeOf→EPS-CS5
|
179 |
32184766 |
3999 |
In terms of bile salt tolerance, CS18 was also the most resistant to bile salt, with a survival rate of 94.40%, while CS5 had the weakest bile salt resistance, with a survival rate as low as 53.17% after incubation with 0.3% bile salt. |
- CS18→CauseOf→resistant
|
180 |
32184766 |
4004 |
Among all the strains investigated in this study apart from CS5, CS9, CS18, and CS20 strains, only seven strains (Supplementary Table S1) were found to contain gadB gene, including B59671, APC151, GABA, KLDS_3.1003, TH1435, ND03, and ACA-DC 2. |
- B59671→ThemeOf→gadB
- gadB→ThemeOf→B59671
|
181 |
32184766 |
4020 |
In addition, the results showed that the pHin value of CS9 cells with the supplement of 1% MSG was significantly higher than in M17 liquid medium (pH 2.5) (Figure 10D). |
- MSG→CauseOf→higher
|
182 |
32184766 |
4038 |
The datasets generated for this study can be found in the nucleotide sequences of CS5, CS9, CS18 and CS20 genomes were submitted to GenBank and assigned accession numbers CP028896, CP030927, CP030928, and CP030250. |
- CP030927→ThemeOf→CS5
- CP028896→ThemeOf→CS5
- CS5→ThemeOf→CP030927
- CS5→ThemeOf→CP028896
- CS5→ThemeOf→CP030928
- CS5→ThemeOf→CP030250
- CP030928→ThemeOf→CS5
- CP030250→ThemeOf→CS5
|
183 |
32226414 |
4048 |
The microflora in raw camel milk consists of Streptococcus, Lactococcus, Weissella, Pediococcus, Lactobacillus, and Enterococcus. |
- Lactococcus→ThemeOf→Weissella
- Lactobacillus→ThemeOf→Weissella
- Weissella→ThemeOf→Streptococcus
- Enterococcus→ThemeOf→Weissella
- Weissella→ThemeOf→Lactococcus
- Weissella→ThemeOf→Enterococcus
- Weissella→ThemeOf→Lactobacillus
- Weissella→ThemeOf→Pediococcus
- Streptococcus→ThemeOf→Weissella
- Pediococcus→ThemeOf→Weissella
|
184 |
32226414 |
4138 |
Among them, phenylethyl alcohol and 5-decanolide were the most abundant compounds in StC with a high correlation coefficient (mainly up to 0.80). |
- StC→ThemeOf→phenylethyl
- phenylethyl→ThemeOf→StC
|
185 |
32226414 |
4165 |
The sequencing data can be found in NCBI under the following accession numbers: MN966848, MN966849, MN966850, and MN966851. |
- MN966849→ThemeOf→NCBI
- MN966848→ThemeOf→NCBI
- NCBI→ThemeOf→MN966849
- NCBI→ThemeOf→MN966848
- NCBI→ThemeOf→MN966851
- NCBI→ThemeOf→MN966850
- MN966851→ThemeOf→NCBI
- MN966850→ThemeOf→NCBI
|
186 |
32295530 |
4347 |
In particular, L. acidophilus, L. casei, L. rhamnosus, L. plantarum, and L. paracasei are often used in probiotic products in combination with other Lactobacillus species. |
- L. paracasei→CauseOf→used
|
187 |
32591517 |
4462 |
Recent advances in metagenomics have revealed that alterations in the human gut microbiota are implicated in a number of disorders, such as obesity, inflammatory bowel disease, colorectal cancer, and diabetes. |
- diabetes→ThemeOf→obesity
- obesity→ThemeOf→gut microbiota
- colorectal cancer→ThemeOf→disorders
- gut microbiota→ThemeOf→colorectal cancer
- alterations→CauseOf→implicated in
- diabetes→ThemeOf→colorectal cancer
- obesity→ThemeOf→alterations
- inflammatory bowel disease→ThemeOf→diabetes
- gut microbiota→ThemeOf→inflammatory bowel disease
- alterations→ThemeOf→disorders
- diabetes→ThemeOf→inflammatory bowel disease
- obesity→ThemeOf→implicated in
- inflammatory bowel disease→ThemeOf→obesity
- gut microbiota→ThemeOf→alterations
- disorders→ThemeOf→diabetes
- diabetes→ThemeOf→gut microbiota
- obesity→ThemeOf→disorders
- inflammatory bowel disease→ThemeOf→colorectal cancer
- gut microbiota→ThemeOf→implicated in
- disorders→ThemeOf→obesity
- diabetes→ThemeOf→alterations
- colorectal cancer→ThemeOf→diabetes
- inflammatory bowel disease→ThemeOf→gut microbiota
- gut microbiota→ThemeOf→disorders
- disorders→ThemeOf→colorectal cancer
- diabetes→ThemeOf→implicated in
- colorectal cancer→ThemeOf→obesity
- inflammatory bowel disease→ThemeOf→alterations
- alterations→ThemeOf→diabetes
- disorders→ThemeOf→inflammatory bowel disease
- diabetes→ThemeOf→disorders
- colorectal cancer→ThemeOf→inflammatory bowel disease
- inflammatory bowel disease→ThemeOf→implicated in
- alterations→ThemeOf→obesity
- disorders→ThemeOf→gut microbiota
- obesity→ThemeOf→diabetes
- colorectal cancer→ThemeOf→gut microbiota
- inflammatory bowel disease→ThemeOf→disorders
- alterations→ThemeOf→colorectal cancer
- disorders→ThemeOf→alterations
- obesity→ThemeOf→colorectal cancer
- colorectal cancer→ThemeOf→alterations
- gut microbiota→ThemeOf→diabetes
- alterations→ThemeOf→inflammatory bowel disease
- disorders→ThemeOf→implicated in
- obesity→ThemeOf→inflammatory bowel disease
- colorectal cancer→ThemeOf→implicated in
- gut microbiota→ThemeOf→obesity
- alterations→ThemeOf→gut microbiota
|
188 |
32709144 |
4580 |
Industrial microbiology has been making use of microorganisms, such as naturally occurring ones, laboratory-selected mutants, or genetically modified organisms, to produce a wide variety of industrial products of human interest. |
- mutants→CauseOf→produce
|
189 |
32709144 |
4583 |
In recent years, an increase in the frequency of application of autochthonous strains to the manufacture of table olives has been witnessed, despite the scarce scientific studies available thereon. |
- autochthonous→CauseOf→increase
|
190 |
32709144 |
4588 |
Unfermented olives and olives by one day of fermentation were composed solely of (Enterobacteriaceae) Hafnia alvei and Methylobacterium sp; conversely, L. plantarum and L. pentosus dominated the metabolically active microbiota of Ctrl brines and olives by the end of fermentation. |
- L. pentosus→CauseOf→dominated
- L. pentosus→ThemeOf→metabolically
- L. plantarum→CauseOf→dominated
- L. plantarum→ThemeOf→metabolically
- metabolically→ThemeOf→L. pentosus
- metabolically→ThemeOf→dominated
- metabolically→ThemeOf→L. plantarum
|
191 |
32709144 |
4633 |
Germane species found include Alkalibacterium pelagium, Alkalibacterium psychrotoleran, Halolactibacillus sp., and Marinilactibacillus psychrotolerans/piezotolerans. |
- Halolactibacillus→ThemeOf→Alkalibacterium psychrotoleran
- Alkalibacterium→ThemeOf→Alkalibacterium psychrotoleran
- Halolactibacillus→ThemeOf→psychrotolerans/piezotolerans
- Alkalibacterium→ThemeOf→psychrotolerans/piezotolerans
- Halolactibacillus→ThemeOf→Alkalibacterium
- Alkalibacterium psychrotoleran→ThemeOf→Halolactibacillus
- Alkalibacterium psychrotoleran→ThemeOf→psychrotolerans/piezotolerans
- Alkalibacterium psychrotoleran→ThemeOf→Alkalibacterium
- psychrotolerans/piezotolerans→ThemeOf→Halolactibacillus
- psychrotolerans/piezotolerans→ThemeOf→Alkalibacterium psychrotoleran
- psychrotolerans/piezotolerans→ThemeOf→Alkalibacterium
- Alkalibacterium→ThemeOf→Halolactibacillus
|
192 |
32781677 |
4703 |
Particularly, during industrial experiments, C. maltaromaticum CNB06 and Lcb. |
- Lcb→ThemeOf→CNB06
- CNB06→ThemeOf→Lcb
|
193 |
32781677 |
4729 |
sakei LSK04 (SA), Lcb. |
- LSK04→ThemeOf→Lcb
- Lcb→ThemeOf→LSK04
|
194 |
32781677 |
4774 |
When bacterial strains were isolated and identified, Obesumbacterium proteus was the most frequent, accounting for more than 40% of isolates in both seasons; this microorganism is usually recognized as a brewery contaminant but was also found in cheese. |
- Obesumbacterium→CauseOf→found
|
195 |
32781677 |
4784 |
In addition, in samples where a mix of Enterobacteriaceae and Pseudomonas was intentionally spiked by spraying on cheese surfaces, C. maltaromaticum CNB06 confirmed its inhibitory effect, lowering the spoiling bacteria between 2-3 Log CFU/g. |
- C. maltaromaticum CNB06→CauseOf→lowering
- CNB06→CauseOf→lowering
|
196 |
32824085 |
4896 |
Furthermore, Nostocaceae was the second most common family found in samples from Magnesia, Kavala and Halkidiki, whereas Leuconostocaceae was the second abundant family detected in samples from the Fthiotida region. |
- Nostocaceae→ThemeOf→Leuconostocaceae
- Leuconostocaceae→ThemeOf→Nostocaceae
|
197 |
33144553 |
9462 |
Lactobacillus delbrueckii comprises six subspecies, namely delbrueckii, lactis, bulgaricus, indicus, jakobsenii, and sunkii, all of which have historically been differentiated based on their ability to metabolize different carbohydrates. |
- delbrueckii→CauseOf→Lactobacillus
- Lactobacillus→CauseOf→delbrueckii
|
198 |
33144553 |
9463 |
lactis and bulgaricus are usually associated with the manufacture of dairy products such as cheeses and yogurt. |
- bulgaricus→CauseOf→associated
|
199 |
33233322 |
4994 |
Two sequence variants were identified in each of the four genomic segments harboring hlyC, cbiQ-glyA, trxA-truB-rsuA, and rplS-tyrS-csdB, respectively. |
- trxA-truB-rsuA→ThemeOf→rplS-tyrS-csdB
- trxA-truB-rsuA→ThemeOf→hlyC
- rplS-tyrS-csdB→ThemeOf→hlyC
- rplS-tyrS-csdB→ThemeOf→trxA-truB-rsuA
- hlyC→ThemeOf→rplS-tyrS-csdB
- hlyC→ThemeOf→trxA-truB-rsuA
|
200 |
33233322 |
4997 |
This RFLP-based typing method could be a useful tool for investigating the ecology of CaPsol and the epidemiology of its associated diseases. |
- RFLP-based→ThemeOf→CaPsol
- CaPsol→ThemeOf→RFLP-based
|
201 |
33233322 |
5021 |
In fact, in Europe, CaPsol tuf-type a and tuf-type b are mainly associated with nettle and bindweed, respectively. |
- tuf-type b→ThemeOf→nettle
- tuf-type b→CauseOf→associated
- tuf-type b→ThemeOf→bindweed
- CaPsol tuf-type a→ThemeOf→nettle
- bindweed→ThemeOf→CaPsol tuf-type a
- CaPsol tuf-type a→CauseOf→associated
- CaPsol tuf-type a→ThemeOf→bindweed
- bindweed→ThemeOf→tuf-type b
- nettle→ThemeOf→CaPsol tuf-type a
- bindweed→ThemeOf→associated
- nettle→ThemeOf→tuf-type b
- nettle→ThemeOf→associated
|
202 |
33233322 |
5026 |
Previous studies on plants and humans indicated that a single substitution between Val and Ile or between Asp and Asn could modify receptor binding activity or enzymatic catalytic activity. |
- enzymatic catalytic activity→ThemeOf→modify
- substitution→ThemeOf→enzymatic catalytic activity
- substitution→ThemeOf→receptor binding activity
- substitution→CauseOf→modify
- receptor binding activity→ThemeOf→enzymatic catalytic activity
- receptor binding activity→ThemeOf→substitution
- receptor binding activity→ThemeOf→modify
- enzymatic catalytic activity→ThemeOf→substitution
- enzymatic catalytic activity→ThemeOf→receptor binding activity
|
203 |
33233322 |
5027 |
Thus, key amino acid substitutions in CaPsol tufB genes could also change EF-Tu activity and/or modify interactions with its binding protein(s). |
- modify→CauseOf→change
- change→CauseOf→modify
- substitutions→CauseOf→modify
- substitutions→CauseOf→change
|
204 |
33233322 |
5041 |
In silico digestion, carried out on the representative nucleotide sequences of CaPsol sequence variants of the hlyC, cbiQ-glyA, trxA-truB-rsuA, and rplS-tyrS-csdB genomic fragments, allowed generation of virtual RFLP profiles for the restriction enzymes SspI, Hpy188I, BsaHI, and HpyCH4V, respectively (Figure 4). |
- Hpy188I→ThemeOf→SspI
- SspI→ThemeOf→RFLP profiles
- SspI→ThemeOf→Hpy188I
- SspI→ThemeOf→variants
- RFLP profiles→ThemeOf→SspI
- variants→ThemeOf→SspI
|
205 |
33233322 |
5045 |
In particular, the major contribution to the variability among these lineages is due to SNPs within the cbiQ-glyA, trxA-truB-rsuA, and rplS-tyrS-csdB genomic fragments. |
- rplS-tyrS-csdB→ThemeOf→SNPs
- cbiQ-glyA→ThemeOf→rplS-tyrS-csdB
- rplS-tyrS-csdB→ThemeOf→cbiQ-glyA
- cbiQ-glyA→ThemeOf→variability
- rplS-tyrS-csdB→ThemeOf→trxA-truB-rsuA
- cbiQ-glyA→ThemeOf→SNPs
- variability→ThemeOf→rplS-tyrS-csdB
- cbiQ-glyA→ThemeOf→trxA-truB-rsuA
- variability→ThemeOf→SNPs
- trxA-truB-rsuA→ThemeOf→rplS-tyrS-csdB
- variability→ThemeOf→cbiQ-glyA
- trxA-truB-rsuA→ThemeOf→variability
- variability→ThemeOf→trxA-truB-rsuA
- trxA-truB-rsuA→ThemeOf→cbiQ-glyA
- SNPs→ThemeOf→rplS-tyrS-csdB
- SNPs→ThemeOf→variability
- rplS-tyrS-csdB→ThemeOf→variability
- SNPs→ThemeOf→cbiQ-glyA
|
206 |
33233322 |
5051 |
It is reasonable to hypothesize that this variability in CaPsol strains could be related to the ecological complexity of vineyards and their surroundings, including the presence of multiple insect vectors and alternative plant hosts. |
- variability→ThemeOf→CaPsol
- CaPsol→ThemeOf→related
- CaPsol→ThemeOf→variability
- variability→CauseOf→related
|
207 |
33233322 |
5052 |
The RFLP-based typing method used in the present study could be considered to be a valuable tool for research on the ecology of CaPsol and the epidemiology of its associated diseases. |
- RFLP-based→ThemeOf→CaPsol
- CaPsol→ThemeOf→RFLP-based
|
208 |
33233322 |
5066 |
Actual RFLP analyses were performed using the enzyme SspI on hlyC amplicons, Hpy188I on cbiQ-glyA amplicons, BsaHI on trxA-truB-rsuA amplicons, and HpyCH4V on rplS-tyrS-csdB amplicons, respectively. |
- HpyCH4V→ThemeOf→cbiQ-glyA
- rplS-tyrS-csdB→ThemeOf→RFLP
- HpyCH4V→ThemeOf→RFLP
- HpyCH4V→ThemeOf→rplS-tyrS-csdB
- cbiQ-glyA→ThemeOf→Hpy188I
- RFLP→ThemeOf→cbiQ-glyA
- cbiQ-glyA→ThemeOf→HpyCH4V
- RFLP→ThemeOf→Hpy188I
- cbiQ-glyA→ThemeOf→RFLP
- RFLP→ThemeOf→HpyCH4V
- cbiQ-glyA→ThemeOf→rplS-tyrS-csdB
- RFLP→ThemeOf→rplS-tyrS-csdB
- Hpy188I→ThemeOf→cbiQ-glyA
- rplS-tyrS-csdB→ThemeOf→cbiQ-glyA
- Hpy188I→ThemeOf→RFLP
- rplS-tyrS-csdB→ThemeOf→Hpy188I
- Hpy188I→ThemeOf→rplS-tyrS-csdB
- rplS-tyrS-csdB→ThemeOf→HpyCH4V
|
209 |
33444386 |
5076 |
Additionally, other beneficial bacteria were detected including Staphylococcus nepalensis, Lactobacillus sakei, Lactobacillus pentosus, Weissella confusa, and Bifidobacterium bifidum. |
- Weissella→ThemeOf→Lactobacillus
- Weissella→ThemeOf→Staphylococcus
- Weissella→ThemeOf→Bifidobacterium
- Lactobacillus→ThemeOf→Weissella
- Staphylococcus→ThemeOf→Weissella
- Bifidobacterium→ThemeOf→Weissella
|
210 |
33444386 |
5182 |
Moreover, there is some evidence that Staphylococcus (S. nepalensis and S. xylosus) are able to improve odor by affecting volatile compounds in the fish sauce. |
- S. nepalensis→CauseOf→affecting
- odor→ThemeOf→volatile compounds
- S. nepalensis→CauseOf→improve
- odor→ThemeOf→affecting
- S. nepalensis→ThemeOf→odor
- odor→ThemeOf→improve
- volatile compounds→ThemeOf→S. nepalensis
- volatile compounds→ThemeOf→affecting
- volatile compounds→ThemeOf→improve
- volatile compounds→ThemeOf→odor
- affecting→CauseOf→improve
- improve→CauseOf→affecting
- S. nepalensis→ThemeOf→volatile compounds
- odor→ThemeOf→S. nepalensis
|
211 |
33444386 |
5189 |
Additionally, to our knowledge, many genera we found in this study have not been previously reported in pla-ra; these include Fusobacterium, Subdoligranulum, Ruminococcaceae_UCG-014, Erysipelotrichaceae_UCG-003 and Bifidobacterium (Fig 1 and S1 Table). |
- Erysipelotrichaceae→ThemeOf→Fusobacterium
- Erysipelotrichaceae→ThemeOf→Bifidobacterium
- Fusobacterium→ThemeOf→Erysipelotrichaceae
- Fusobacterium→ThemeOf→Bifidobacterium
- Bifidobacterium→ThemeOf→Erysipelotrichaceae
- Bifidobacterium→ThemeOf→Fusobacterium
|
212 |
33548354 |
6695 |
Microbial community changes in a female rat model of Rett syndrome Rett syndrome (RTT) is an X-linked neurodevelopmental disorder that is predominantly caused by alterations of the methyl-CpG-binding protein 2 (MECP2) gene. |
- MECP2→ThemeOf→alterations
- alterations→ThemeOf→MECP2
- X-linked neurodevelopmental disorder→ThemeOf→caused by
- alterations→ThemeOf→X-linked neurodevelopmental disorder
- X-linked neurodevelopmental disorder→ThemeOf→MECP2
- alterations→ThemeOf→Rett syndrome
- X-linked neurodevelopmental disorder→ThemeOf→Rett syndrome
- X-linked neurodevelopmental disorder→ThemeOf→alterations
- Rett syndrome→ThemeOf→caused by
- Rett syndrome→ThemeOf→MECP2
- MECP2→ThemeOf→caused by
- Rett syndrome→ThemeOf→X-linked neurodevelopmental disorder
- MECP2→ThemeOf→X-linked neurodevelopmental disorder
- Rett syndrome→ThemeOf→alterations
- MECP2→ThemeOf→Rett syndrome
- alterations→CauseOf→caused by
|
213 |
33548354 |
6698 |
Although the gut microbiome has been previously characterized in humans with RTT compared to healthy controls, the impact of MECP2 mutation on the composition of the gut microbiome in animal models where the host and diet can be experimentally controlled remains to be elucidated. |
- composition of the gut microbiome→ThemeOf→mutation
- MECP2→ThemeOf→impact
- MECP2→ThemeOf→RTT
- RTT→ThemeOf→impact
- MECP2→ThemeOf→composition of the gut microbiome
- RTT→ThemeOf→composition of the gut microbiome
- MECP2→ThemeOf→mutation
- RTT→ThemeOf→MECP2
- mutation→CauseOf→impact
- RTT→ThemeOf→mutation
- mutation→ThemeOf→RTT
- composition of the gut microbiome→ThemeOf→impact
- mutation→ThemeOf→composition of the gut microbiome
- composition of the gut microbiome→ThemeOf→RTT
- mutation→ThemeOf→MECP2
- composition of the gut microbiome→ThemeOf→MECP2
|
214 |
33548354 |
6702 |
Greater than 95% of all cases of RTT harbor alterations in the methyl-CpG-binding protein 2 (MECP2) gene. |
- alterations→ThemeOf→RTT
- MECP2→ThemeOf→alterations
- MECP2→ThemeOf→RTT
- RTT→ThemeOf→alterations
- RTT→ThemeOf→MECP2
- alterations→ThemeOf→MECP2
|
215 |
33548354 |
6723 |
Originally Wistar, WT S100b eGFP males were back crossed over 10 generations onto a Sprague Dawley background prior to crossing with Mecp2ZFN/+. |
- Mecp2ZFN/+→ThemeOf→eGFP
- Mecp2ZFN/+→ThemeOf→S100b
- eGFP→ThemeOf→Mecp2ZFN/+
- S100b→ThemeOf→Mecp2ZFN/+
|
216 |
33548354 |
6752 |
However, Mecp2ZFN/+ rats begin to diverge from WT rats in beta diversity at p49, and continue to be significantly distinct through p196 (Fig. |
- Mecp2ZFN/+→ThemeOf→beta diversity
- beta diversity→ThemeOf→Mecp2ZFN/+
|
217 |
33548354 |
6756 |
At p35, the gut microbiota of both Mecp2ZFN/+ and WT rats is characterized by dominance of Bacteroidetes and Firmicutes phyla, as is also apparent in the aforementioned human studies. |
- Mecp2ZFN/+→CauseOf→dominance
|
218 |
33548354 |
6759 |
Additionally, A. muciniphila are lower in abundance in Mecp2ZFN/+ rats compared to WT (Fig. |
- Mecp2ZFN/+→CauseOf→lower
|
219 |
33548354 |
6785 |
Rat models of RTT have previously been utilized to assess the longitudinal effects of MECP2 mutations on neural, motor, and metabolic symptoms. |
- neural→ThemeOf→mutations
- MECP2→ThemeOf→neural
- MECP2→ThemeOf→RTT
- MECP2→ThemeOf→mutations
- RTT→ThemeOf→MECP2
- RTT→ThemeOf→mutations
- mutations→ThemeOf→neural
- neural→ThemeOf→MECP2
- mutations→ThemeOf→MECP2
- mutations→ThemeOf→RTT
|
220 |
33548354 |
6799 |
In the current study, we found that Mecp2ZFN/+ differed from WT rats only in beta diversity measures. |
- Mecp2ZFN/+→ThemeOf→beta diversity measures
- beta diversity measures→ThemeOf→Mecp2ZFN/+
|
221 |
33548354 |
6806 |
In the current study, we observed broad taxonomy shifts in the microbiomes of Mecp2ZFN/+ rats compared to WT rats beginning at p49, persisting through p105, and re-emerging at p196. |
- microbiomes→ThemeOf→shifts
- Mecp2ZFN/+→ThemeOf→taxonomy
- Mecp2ZFN/+→CauseOf→shifts
- Mecp2ZFN/+→ThemeOf→microbiomes
- taxonomy→ThemeOf→Mecp2ZFN/+
- taxonomy→ThemeOf→shifts
- taxonomy→ThemeOf→microbiomes
- microbiomes→ThemeOf→Mecp2ZFN/+
- microbiomes→ThemeOf→taxonomy
|
222 |
33548354 |
6807 |
Specifically, at p105, we observed significant changes in the abundance of B. ovatus, B. uniformis, L. ruminis, and A. muciniphila in Mecp2ZFN/+ rats compared to WT. |
- A. muciniphila→ThemeOf→abundance
- abundance→ThemeOf→Mecp2ZFN/+
- B. uniformis→ThemeOf→abundance
- L. ruminis→ThemeOf→changes
- Mecp2ZFN/+→CauseOf→changes
- abundance→ThemeOf→B. ovatus
- L. ruminis→ThemeOf→A. muciniphila
- Mecp2ZFN/+→ThemeOf→L. ruminis
- abundance→ThemeOf→B. uniformis
- L. ruminis→ThemeOf→Mecp2ZFN/+
- Mecp2ZFN/+→ThemeOf→A. muciniphila
- B. ovatus→ThemeOf→changes
- L. ruminis→ThemeOf→abundance
- Mecp2ZFN/+→ThemeOf→abundance
- B. ovatus→ThemeOf→L. ruminis
- L. ruminis→ThemeOf→B. ovatus
- Mecp2ZFN/+→ThemeOf→B. ovatus
- B. ovatus→ThemeOf→Mecp2ZFN/+
- L. ruminis→ThemeOf→B. uniformis
- Mecp2ZFN/+→ThemeOf→B. uniformis
- B. ovatus→ThemeOf→abundance
- A. muciniphila→ThemeOf→changes
- abundance→ThemeOf→changes
- B. uniformis→ThemeOf→changes
- A. muciniphila→ThemeOf→L. ruminis
- abundance→ThemeOf→L. ruminis
- B. uniformis→ThemeOf→L. ruminis
- A. muciniphila→ThemeOf→Mecp2ZFN/+
- abundance→ThemeOf→A. muciniphila
- B. uniformis→ThemeOf→Mecp2ZFN/+
|
223 |
33562375 |
5258 |
Variations in the relative abundance of ASV0360 Lactobacillus acidipiscis (21.65%) and ASV0001 Clostridium metallolevans (11.23%) were primarily responsible for the difference in bacterial community composition in November and January. |
- ASV0360→ThemeOf→bacterial community composition
- bacterial community composition→ThemeOf→relative abundance
- ASV0360→ThemeOf→ASV0001
- ASV0001→ThemeOf→ASV0360
- ASV0360→ThemeOf→relative abundance
- ASV0001→ThemeOf→Lactobacillus
- Lactobacillus→ThemeOf→ASV0360
- ASV0001→ThemeOf→bacterial community composition
- Lactobacillus→ThemeOf→bacterial community composition
- ASV0001→ThemeOf→relative abundance
- Lactobacillus→ThemeOf→ASV0001
- relative abundance→ThemeOf→ASV0360
- Lactobacillus→ThemeOf→relative abundance
- relative abundance→ThemeOf→Lactobacillus
- bacterial community composition→ThemeOf→ASV0360
- relative abundance→ThemeOf→bacterial community composition
- bacterial community composition→ThemeOf→Lactobacillus
- relative abundance→ThemeOf→ASV0001
- ASV0360→ThemeOf→Lactobacillus
- bacterial community composition→ThemeOf→ASV0001
|
224 |
33562375 |
5259 |
There were ASV0002 L. acidipiscis (12.76%) and ASV0001 Clostridium metallolevans (11.92%) between November and March, and ASV0360 L. acidipiscis (22.93%) between January and March (Table 1). |
- Clostridium→ThemeOf→ASV0001
- Clostridium→ThemeOf→ASV0360 L. acidipiscis
- Clostridium→ThemeOf→ASV0002 L. acidipiscis
- ASV0360 L. acidipiscis→ThemeOf→Clostridium
- ASV0002 L. acidipiscis→ThemeOf→Clostridium
- ASV0001→ThemeOf→Clostridium
|
225 |
33562375 |
5264 |
Among the common foods, P. arundinacea, P. annua, R. japonicus, P. supina, and V. natans had an extremely significant correlation with intestinal bacteria, and P. criopolitanum and V. natans had a significant correlation with intestinal potential pathogenic bacteria (Table 2 and Table 3). |
- P. criopolitanum→ThemeOf→intestinal bacteria
- intestinal bacteria→ThemeOf→P. criopolitanum
|
226 |
33670654 |
5392 |
Notably, it was previously demonstrated that, in terms of short chain fatty acid profiles, the 22% OS group had the lowest lactic acid/acetic acid in the FTMR. |
- lactic acid/acetic acid→ThemeOf→lowest
- 22% OS→CauseOf→lowest
- 22% OS→ThemeOf→lactic acid/acetic acid
- lactic acid/acetic acid→ThemeOf→22% OS
|
227 |
33679767 |
5406 |
Changes in the composition and structure of the gastrointestinal flora can affect the characteristics and development of the host immune system and even induce a series of central nervous system inflammation events. |
- composition→ThemeOf→inflammation
- Changes→ThemeOf→composition
- inflammation→ThemeOf→induce
- characteristics→ThemeOf→composition
- composition→ThemeOf→induce
- Changes→CauseOf→affect
- characteristics→ThemeOf→Changes
- composition→ThemeOf→characteristics
- affect→CauseOf→induce
- characteristics→ThemeOf→affect
- composition→ThemeOf→development of the host immune system
- inflammation→ThemeOf→composition
- composition→ThemeOf→Changes
- inflammation→ThemeOf→Changes
- development of the host immune system→ThemeOf→induce
- composition→ThemeOf→affect
- inflammation→ThemeOf→affect
- Changes→ThemeOf→inflammation
- induce→CauseOf→affect
- development of the host immune system→ThemeOf→composition
- Changes→CauseOf→induce
- development of the host immune system→ThemeOf→Changes
- Changes→ThemeOf→characteristics
- characteristics→ThemeOf→induce
- development of the host immune system→ThemeOf→affect
- Changes→ThemeOf→development of the host immune system
|
228 |
33679767 |
5412 |
Moreover, including L. acidipiscis enhanced the development of Vgamma1+gammadelta T cells but suppressed that of Vgamma4+gammadelta T cells. |
- enhanced→CauseOf→suppressed
- suppressed→CauseOf→enhanced
- L. acidipiscis→CauseOf→enhanced
- L. acidipiscis→CauseOf→suppressed
|
229 |
33679767 |
5413 |
In summary, our results demonstrated the ability of L. acidipiscis to induce generation of regulatory gammadelta T cells that suppress the development of the encephalomyelitic Th1 and Th17 cells and the progress of EAE. |
- L. acidipiscis→CauseOf→suppress
|
230 |
33679767 |
5418 |
This model is consistent with the induction method of MS, specifically combining myelin oligodendrocyte glycoprotein residues 35-55 (MOG35-55) with immunostimulant to induce the generation of pathogenic Th1 and Th17 cells. |
- MOG35-55→CauseOf→induce
- myelin oligodendrocyte glycoprotein→ThemeOf→induce
- myelin oligodendrocyte glycoprotein→ThemeOf→MOG35-55
- MOG35-55→ThemeOf→myelin oligodendrocyte glycoprotein
|
231 |
33679767 |
5425 |
In the intestinal epithelial lymphocytes (IELs) of mice, specifically in the duodenum and jejunum, the percentage of T cells consisting of gammadelta T cells was observed to be as high as 70%, much higher than that of alphabeta T cells. |
- gammadelta T cells→CauseOf→higher
|
232 |
33679767 |
5431 |
According to the composition of T cell receptors, the peripheral gammadelta T cells in mice can be divided into two main subsets: Vgamma1+ and Vgamma4+. |
- Vgamma4+→ThemeOf→gammadelta
- Vgamma1+→ThemeOf→gammadelta
- gammadelta→ThemeOf→Vgamma4+
- gammadelta→ThemeOf→Vgamma1+
|
233 |
33679767 |
5432 |
However, Vgamma1+ gammadelta T cells have been shown to produce more Th2-type cytokines such as IL-4, while Vgamma4+ gammadelta T cells have been shown to preferentially produce IL-17A. |
- Vgamma4+ gammadelta T→ThemeOf→IL-4
- Vgamma1+ gammadelta T cells→CauseOf→more
- Vgamma4+ gammadelta T→ThemeOf→IL-17A
- Vgamma1+ gammadelta T cells→ThemeOf→Th2-type cytokines
- Vgamma4+ gammadelta T→CauseOf→more
- Th2-type cytokines→ThemeOf→IL-4
- Vgamma4+ gammadelta T→ThemeOf→Th2-type cytokines
- Th2-type cytokines→ThemeOf→Vgamma4+ gammadelta T
- IL-17A→ThemeOf→Vgamma4+ gammadelta T
- Th2-type cytokines→ThemeOf→IL-17A
- IL-17A→ThemeOf→more
- Th2-type cytokines→ThemeOf→more
- IL-4→ThemeOf→Vgamma4+ gammadelta T
- IL-17A→ThemeOf→Vgamma1+ gammadelta T cells
- Th2-type cytokines→ThemeOf→Vgamma1+ gammadelta T cells
- IL-4→ThemeOf→more
- IL-17A→ThemeOf→Th2-type cytokines
- IL-4→ThemeOf→Vgamma1+ gammadelta T cells
- Vgamma1+ gammadelta T cells→ThemeOf→IL-4
- IL-4→ThemeOf→Th2-type cytokines
- Vgamma1+ gammadelta T cells→ThemeOf→IL-17A
|
234 |
33679767 |
5435 |
In rodent models, discrepancies in gut microbiota were found to be associated with in some cases susceptibility to EAE and other cases resistance to EAE. |
- EAE→ThemeOf→gut
- gut→ThemeOf→EAE
- discrepancies→CauseOf→associated
- gut→ThemeOf→discrepancies
- discrepancies→ThemeOf→EAE
- gut→ThemeOf→susceptibility
- discrepancies→ThemeOf→susceptibility
- discrepancies→ThemeOf→gut
- susceptibility→ThemeOf→associated
- susceptibility→ThemeOf→EAE
- EAE→ThemeOf→associated
- susceptibility→ThemeOf→discrepancies
- EAE→ThemeOf→discrepancies
- susceptibility→ThemeOf→gut
- EAE→ThemeOf→susceptibility
- gut→ThemeOf→associated
|
235 |
33679767 |
5436 |
Previous studies from our laboratory showed that CD44 may also regulate inflammation, in as much as CD44 deficiency inhibits proinflammatory Th1 and Th17 cells while promoting CD4+ Th2 and Treg cell differentiation. |
- inhibits→CauseOf→regulate
- deficiency→CauseOf→promoting
- deficiency→CauseOf→regulate
- promoting→CauseOf→inhibits
- regulate→CauseOf→inhibits
- promoting→CauseOf→regulate
- deficiency→CauseOf→inhibits
- regulate→CauseOf→promoting
- inhibits→CauseOf→promoting
|
236 |
33679767 |
5437 |
In fact, CD44 deficiency led to decreased inflammation and amelioration of an experimental form of EAE. |
- CD44→ThemeOf→decreased
- deficiency→CauseOf→amelioration
- CD44→ThemeOf→amelioration
- CD44→ThemeOf→deficiency
- amelioration→CauseOf→decreased
- deficiency→CauseOf→decreased
- deficiency→ThemeOf→CD44
- decreased→CauseOf→amelioration
|
237 |
33679767 |
5442 |
In the absence of these regulatory gammadelta T cells, L. acidipiscis did not protect mice from EAE. |
- L. acidipiscis→CauseOf→not
|
238 |
33679767 |
5470 |
These encephalitogenic CD4+ T cells were cultured in RPMI1640 medium (Gibco BRL) with 10% FCS and MOG35-55 (30 mug/mL). |
- MOG35-55→ThemeOf→CD4
- encephalitogenic→ThemeOf→CD4
- encephalitogenic→ThemeOf→MOG35-55
- CD4→ThemeOf→encephalitogenic
- CD4→ThemeOf→MOG35-55
- MOG35-55→ThemeOf→encephalitogenic
|
239 |
33679767 |
5498 |
The amounts of acetic acid (p < 0.01), n-butyric acid (p < 0.01), i-butyric acid (p < 0.001), propionic acid (p < 0.001), i-valeric acid (p < 0.01) and n-caproic acid (p < 0.05) in the feces of C57BL/6 mice fed with L. acidipiscis were significantly higher than for those fed with E. coli. |
- n-caproic acid→ThemeOf→higher
- i-butyric acid→ThemeOf→n-butyric acid
- propionic acid→ThemeOf→n-caproic acid
- n-butyric acid→ThemeOf→i-valeric acid
- L. acidipiscis→ThemeOf→n-caproic acid
- n-caproic acid→ThemeOf→i-valeric acid
- i-butyric acid→ThemeOf→amounts of acetic acid
- propionic acid→ThemeOf→i-butyric acid
- n-butyric acid→ThemeOf→propionic acid
- L. acidipiscis→ThemeOf→i-butyric acid
- n-caproic acid→ThemeOf→propionic acid
- i-valeric acid→ThemeOf→L. acidipiscis
- propionic acid→ThemeOf→higher
- n-butyric acid→ThemeOf→amounts of acetic acid
- L. acidipiscis→CauseOf→higher
- n-caproic acid→ThemeOf→n-butyric acid
- i-valeric acid→ThemeOf→n-caproic acid
- propionic acid→ThemeOf→i-valeric acid
- amounts of acetic acid→ThemeOf→L. acidipiscis
- L. acidipiscis→ThemeOf→i-valeric acid
- n-caproic acid→ThemeOf→amounts of acetic acid
- i-valeric acid→ThemeOf→i-butyric acid
- propionic acid→ThemeOf→n-butyric acid
- amounts of acetic acid→ThemeOf→n-caproic acid
- L. acidipiscis→ThemeOf→propionic acid
- i-butyric acid→ThemeOf→L. acidipiscis
- i-valeric acid→ThemeOf→higher
- propionic acid→ThemeOf→amounts of acetic acid
- amounts of acetic acid→ThemeOf→i-butyric acid
- L. acidipiscis→ThemeOf→n-butyric acid
- i-butyric acid→ThemeOf→n-caproic acid
- i-valeric acid→ThemeOf→propionic acid
- n-butyric acid→ThemeOf→L. acidipiscis
- amounts of acetic acid→ThemeOf→higher
- L. acidipiscis→ThemeOf→amounts of acetic acid
- i-butyric acid→ThemeOf→higher
- i-valeric acid→ThemeOf→n-butyric acid
- n-butyric acid→ThemeOf→n-caproic acid
- amounts of acetic acid→ThemeOf→i-valeric acid
- n-caproic acid→ThemeOf→L. acidipiscis
- i-butyric acid→ThemeOf→i-valeric acid
- i-valeric acid→ThemeOf→amounts of acetic acid
- n-butyric acid→ThemeOf→i-butyric acid
- amounts of acetic acid→ThemeOf→propionic acid
- n-caproic acid→ThemeOf→i-butyric acid
- i-butyric acid→ThemeOf→propionic acid
- propionic acid→ThemeOf→L. acidipiscis
- n-butyric acid→ThemeOf→higher
- amounts of acetic acid→ThemeOf→n-butyric acid
|
240 |
33679767 |
5499 |
Furthermore, the data showed a significant difference (p < 0.001) in the concentration of n-valeric acid between the EAE-WT mice that received E. coli and those receiving L. acidipiscis, indicating that L. acidipiscis could induce protective immunophenotypes by synthesizing acetic acid and other SFCAs in the intestinal tracts of EAE-susceptible mice. |
- L. acidipiscis→CauseOf→induce
- L. acidipiscis→CauseOf→acetic acid
- acetic acid→ThemeOf→induce
- acetic acid→CauseOf→L. acidipiscis
|
241 |
33679767 |
5504 |
The production of protective IL-10 and that of IL-13 were each increased, while the production of pathological IFN-gamma and that of IL-17A were each significantly decreased, indicating that L. acidipiscis may regulate the differentiation of cerebrospinal inflammatory CD4+ T cells and induce a deviation of the protective T cell immune response (Figure 4). |
- induce→CauseOf→deviation
- induce→CauseOf→regulate
- L. acidipiscis→CauseOf→induce
- deviation→CauseOf→induce
- deviation→CauseOf→regulate
- L. acidipiscis→CauseOf→regulate
- regulate→CauseOf→deviation
- regulate→CauseOf→induce
- L. acidipiscis→CauseOf→deviation
|
242 |
33679767 |
5512 |
In addition, the differentiation of Th2 cells was significantly enhanced after they were co-cultured with L. acidipiscis (Figure 6B), whereas the development of Th17 cells was significantly inhibited after they were co-cultured with L. acidipiscis (Figure 6C). |
- L. acidipiscis→CauseOf→inhibited
- L. acidipiscis→CauseOf→enhanced
|
243 |
33679767 |
5528 |
Our results showed that compared with E. coli, L. acidipiscis increased the production of CD4+ FOXP3+ Treg cells, IL-10 and IL-13, and inhibited the production of Th1, Th17, IFN-gamma and IL-17A. |
- production→ThemeOf→L. acidipiscis
- IL-17A→ThemeOf→increased
- IL-10→ThemeOf→increased
- production of Th1→ThemeOf→L. acidipiscis
- L. acidipiscis→ThemeOf→CD4
- FOXP3→ThemeOf→production of Th1
- production→ThemeOf→FOXP3
- IL-17A→ThemeOf→L. acidipiscis
- IL-10→ThemeOf→L. acidipiscis
- production of Th1→ThemeOf→FOXP3
- L. acidipiscis→ThemeOf→IL-17A
- FOXP3→ThemeOf→inhibited
- production→ThemeOf→CD4
- CD4→ThemeOf→production
- IL-13→ThemeOf→production
- production of Th1→ThemeOf→production
- inhibited→CauseOf→increased
- L. acidipiscis→ThemeOf→IL-13
- FOXP3→ThemeOf→increased
- production→ThemeOf→IL-17A
- CD4→ThemeOf→production of Th1
- IL-13→ThemeOf→production of Th1
- production of Th1→ThemeOf→CD4
- IFN-gamma→ThemeOf→production
- L. acidipiscis→ThemeOf→IL-10
- FOXP3→ThemeOf→L. acidipiscis
- production→ThemeOf→IL-13
- CD4→ThemeOf→inhibited
- IL-13→ThemeOf→inhibited
- production of Th1→ThemeOf→IL-17A
- IFN-gamma→ThemeOf→production of Th1
- L. acidipiscis→ThemeOf→production of Th1
- production→ThemeOf→IL-10
- CD4→ThemeOf→increased
- IL-13→ThemeOf→increased
- production of Th1→ThemeOf→IL-13
- IFN-gamma→ThemeOf→inhibited
- L. acidipiscis→CauseOf→inhibited
- production→ThemeOf→production of Th1
- CD4→ThemeOf→L. acidipiscis
- IL-13→ThemeOf→L. acidipiscis
- production of Th1→ThemeOf→IL-10
- IFN-gamma→ThemeOf→increased
- L. acidipiscis→ThemeOf→IFN-gamma
- production→ThemeOf→inhibited
- IL-17A→ThemeOf→production
- IL-10→ThemeOf→production
- production of Th1→ThemeOf→inhibited
- IFN-gamma→ThemeOf→L. acidipiscis
- L. acidipiscis→CauseOf→increased
- production→ThemeOf→IFN-gamma
- IL-17A→ThemeOf→production of Th1
- IL-10→ThemeOf→production of Th1
- production of Th1→ThemeOf→IFN-gamma
- increased→CauseOf→inhibited
- L. acidipiscis→ThemeOf→FOXP3
- production→ThemeOf→increased
- IL-17A→ThemeOf→inhibited
- IL-10→ThemeOf→inhibited
- production of Th1→ThemeOf→increased
- L. acidipiscis→ThemeOf→production
- FOXP3→ThemeOf→production
|
244 |
33679767 |
5538 |
While Vgamma1+ gammadelta T cells produce more Th2-type cytokines such as IL-4 and IL-5, Vgamma4+ gammadelta T cells preferentially produce IL-17. |
- IL-5→ThemeOf→Vgamma1+ gammadelta T
- IL-17→ThemeOf→Vgamma4+ gammadelta T
- IL-17→ThemeOf→Vgamma1+ gammadelta T
- Vgamma1+ gammadelta T→ThemeOf→IL-5
- Vgamma1+ gammadelta T→ThemeOf→IL-17
- Vgamma1+ gammadelta T→ThemeOf→IL-4
- Vgamma4+ gammadelta T→ThemeOf→IL-5
- IL-4→ThemeOf→Vgamma4+ gammadelta T
- Vgamma4+ gammadelta T→ThemeOf→IL-17
- IL-4→ThemeOf→Vgamma1+ gammadelta T
- Vgamma4+ gammadelta T→ThemeOf→IL-4
- IL-5→ThemeOf→Vgamma4+ gammadelta T
|
245 |
33679767 |
5540 |
In this study, we found a negative correlation between L. acidipiscis in the intestinal tract and the progress of EAE. |
- progress→ThemeOf→L. acidipiscis
- EAE→ThemeOf→negative
- EAE→ThemeOf→progress
- EAE→ThemeOf→L. acidipiscis
- L. acidipiscis→CauseOf→negative
- L. acidipiscis→ThemeOf→progress
- L. acidipiscis→ThemeOf→EAE
- progress→ThemeOf→negative
- progress→ThemeOf→EAE
|
246 |
33679767 |
5541 |
The resistance of CD44KO mice to EAE was related to the stimulation and activation of gammadelta T cells in small intestine epithelial tissues by L. acidipiscis. |
- gammadelta T→ThemeOf→CD44KO
- stimulation→CauseOf→activation
- gammadelta T→ThemeOf→stimulation
- L. acidipiscis→CauseOf→activation
- L. acidipiscis→ThemeOf→gammadelta T
- L. acidipiscis→ThemeOf→CD44KO
- L. acidipiscis→CauseOf→stimulation
- CD44KO→ThemeOf→activation
- activation→CauseOf→stimulation
- CD44KO→ThemeOf→gammadelta T
- gammadelta T→ThemeOf→activation
- CD44KO→ThemeOf→L. acidipiscis
- gammadelta T→ThemeOf→L. acidipiscis
- CD44KO→ThemeOf→stimulation
|
247 |
33679767 |
5545 |
Our results showed a negative correlation between the amount of intestinal L. acidipiscis and the progression of EAE, and showed the regulation of encephalitogenic CD4+ T cell differentiation by L. acidipiscis to be related to gammadelta T cells. |
- CD4→ThemeOf→L. acidipiscis
- L. acidipiscis→ThemeOf→gammadelta T
- CD4→ThemeOf→gammadelta T
- L. acidipiscis→ThemeOf→EAE
- CD4→ThemeOf→EAE
- L. acidipiscis→ThemeOf→CD4
- gammadelta T→ThemeOf→L. acidipiscis
- gammadelta T→ThemeOf→EAE
- gammadelta T→ThemeOf→CD4
- EAE→ThemeOf→L. acidipiscis
- EAE→ThemeOf→gammadelta T
- EAE→ThemeOf→CD4
|
248 |
33679767 |
5546 |
Meanwhile in our experiments, L. acidipiscis suppressed in vitro the proliferation of Th1 and Th17 cells as well as the secretion of IFN-gamma and IL-17A, and clearly promoted the development of Treg and Th2 cells. |
- L. acidipiscis→CauseOf→suppressed
- promoted→CauseOf→suppressed
- suppressed→CauseOf→promoted
- L. acidipiscis→CauseOf→promoted
|
249 |
34045460 |
5555 |
The GM byproduct trimethylamine-n-oxide could degrade some circRNAs. |
- trimethylamine-n-oxide→CauseOf→degrade
|
250 |
34045460 |
5639 |
After blockade with 5% nonfat dry milk in Tris-buffered saline (20 mM Tris-HCl, 500 mM NaCl, pH 7.4) with 0.2% Tween-20 (T104863; Aladdin, Beijing, China), the PVDF membranes were probed with antibodies overnight at 4 C, followed by incubation with a horseradish peroxidase-conjugated goat anti-mouse (G2211-1-A; Servicebio, Beijing, China) or goat anti-rabbit (G2210-2-A; Servicebio) IgG secondary antibody (1:2000 dilution). |
- G2211-1-A→ThemeOf→dry milk
- dry milk→ThemeOf→G2211-1-A
- dry milk→ThemeOf→G2210-2-A
- G2210-2-A→ThemeOf→dry milk
|
251 |
34045460 |
5641 |
The bodyweights of mice fed a HSHF diet were higher than those fed a standard diet (control, p < 0.05) (Fig. |
- bodyweights→ThemeOf→HSHF
- bodyweights→ThemeOf→higher
- HSHF→ThemeOf→bodyweights
- HSHF→CauseOf→higher
|
252 |
34045460 |
5645 |
These data suggested that the HSHF diet utilized caused increases in bodyweight, blood glucose level, and TMAO level. |
- HSHF→CauseOf→increases
|
253 |
34045460 |
5646 |
Sequencing of the 16 S rRNA gene showed that the HSHF diet significantly decreased the operational taxonomic units (OTUs) of bacteria of the phyla Acidobacteria, Verrucomicrobia, Tenericutes, and Firmicutes, while increasing the OTUs of bacteria of the phyla Bacteroidetes, Proteobacteria, Deferribacteres, Cyanobacteria and Actinobacteria (p < 0.05) (Fig. |
- HSHF→CauseOf→decreased
- decreased→CauseOf→increasing
- increasing→CauseOf→decreased
- HSHF→CauseOf→increasing
|
254 |
34045460 |
5650 |
Hence, the HSHF diet could induce dysbacteriosis in mice. |
- HSHF→ThemeOf→dysbacteriosis
- HSHF→CauseOf→induce
- dysbacteriosis→ThemeOf→HSHF
- dysbacteriosis→ThemeOf→induce
|
255 |
34045460 |
5653 |
The pathology of the small intestine and colon of mice fed the HSHF diet was different from that of mice fed the standard diet. |
- colon→ThemeOf→different
- HSHF→CauseOf→different
|
256 |
34045460 |
5661 |
S2F) tissues showed that the HSHF diet not only induced dysbacteriosis, but also activated inflammation and damage to multiple organs. |
- HSHF→CauseOf→activated
- HSHF→CauseOf→induced
- activated→CauseOf→induced
- induced→CauseOf→activated
|
257 |
34045460 |
5676 |
These data demonstrated that atrophy, inflammation, or the immune response were imbalanced in the brains of mice with HSHF diet-induced dysbacteriosis. |
- atrophy→ThemeOf→immune response
- HSHF→ThemeOf→dysbacteriosis
- dysbacteriosis→ThemeOf→atrophy
- HSHF→ThemeOf→inflammation
- dysbacteriosis→ThemeOf→inflammation
- HSHF→ThemeOf→immune response
- dysbacteriosis→ThemeOf→HSHF
- immune response→ThemeOf→atrophy
- dysbacteriosis→ThemeOf→immune response
- immune response→ThemeOf→dysbacteriosis
- inflammation→ThemeOf→atrophy
- immune response→ThemeOf→inflammation
- inflammation→ThemeOf→dysbacteriosis
- immune response→ThemeOf→HSHF
- atrophy→ThemeOf→dysbacteriosis
- inflammation→ThemeOf→HSHF
- atrophy→ThemeOf→inflammation
- inflammation→ThemeOf→immune response
- atrophy→ThemeOf→HSHF
- HSHF→ThemeOf→atrophy
|
258 |
34045460 |
5701 |
The ACh level in brain tissues was important for the interactions between the brain circRNA of chr5_21278044/21281602_+, chrX_162934286/162941844_+ and chr16_37121798/ 37129964_-, and bacteria from Paraprevotella, Helicobacteraceae, Erysipelotrichaceae, [Ruminococcus] and Streptophyta (Fig. |
- chr5_21278044/21281602_+→ThemeOf→Erysipelotrichaceae
- chr5_21278044/21281602_+→ThemeOf→ACh
- chrX_162934286/162941844_+→ThemeOf→Erysipelotrichaceae
- chrX_162934286/162941844_+→ThemeOf→ACh
- ACh→ThemeOf→Erysipelotrichaceae
- ACh→ThemeOf→chr5_21278044/21281602_+
- ACh→ThemeOf→chrX_162934286/162941844_+
- Erysipelotrichaceae→ThemeOf→chr5_21278044/21281602_+
- Erysipelotrichaceae→ThemeOf→chrX_162934286/162941844_+
- Erysipelotrichaceae→ThemeOf→ACh
|
259 |
34045460 |
5719 |
Levels of some monoamine neurotransmitter were changed in mice fed the HSHF diet (Figs. |
- HSHF→CauseOf→changed
|
260 |
34045460 |
5741 |
8Ad), which indicated that energy metabolism was imbalanced due to dysfunction of NADH dehydrogenase activity and oxidoreductase. |
- dysfunction→ThemeOf→NADH
- dysfunction→ThemeOf→energy metabolism
- energy metabolism→ThemeOf→NADH
- energy metabolism→ThemeOf→dysfunction
- NADH→ThemeOf→dysfunction
- NADH→ThemeOf→energy metabolism
|
261 |
34045460 |
5744 |
In agreement with results from other studies, TMA resulted in negative consequences for the host and, in the present study, TMA led to negative consequences for the nervous system. |
- TMA→CauseOf→negative
- TMA→CauseOf→negative
|
262 |
34045460 |
5752 |
Previously, using in an overexpressed circNF1-419 adeno-associated virus system, we showed that circRNAs in the brain influenced the cholinergic system of the brain, and changed the GM composition, intestinal homeostasis/physiology, and even the GM trajectory in newborn mice. |
- GM composition→ThemeOf→circRNAs
- GM trajectory→ThemeOf→intestinal homeostasis/physiology
- cholinergic system→ThemeOf→changed
- GM composition→ThemeOf→changed
- GM trajectory→ThemeOf→influenced
- circRNAs→ThemeOf→GM composition
- intestinal homeostasis/physiology→ThemeOf→GM composition
- GM trajectory→ThemeOf→cholinergic system
- circRNAs→ThemeOf→intestinal homeostasis/physiology
- intestinal homeostasis/physiology→ThemeOf→influenced
- GM trajectory→ThemeOf→circRNAs
- circRNAs→CauseOf→influenced
- intestinal homeostasis/physiology→ThemeOf→GM trajectory
- GM trajectory→ThemeOf→changed
- circRNAs→ThemeOf→GM trajectory
- intestinal homeostasis/physiology→ThemeOf→cholinergic system
- cholinergic system→ThemeOf→GM composition
- circRNAs→ThemeOf→cholinergic system
- GM composition→ThemeOf→intestinal homeostasis/physiology
- intestinal homeostasis/physiology→ThemeOf→circRNAs
- cholinergic system→ThemeOf→intestinal homeostasis/physiology
- circRNAs→CauseOf→changed
- GM composition→ThemeOf→influenced
- intestinal homeostasis/physiology→ThemeOf→changed
- cholinergic system→ThemeOf→influenced
- changed→CauseOf→influenced
- GM composition→ThemeOf→GM trajectory
- influenced→CauseOf→changed
- cholinergic system→ThemeOf→GM trajectory
- GM composition→ThemeOf→cholinergic system
- GM trajectory→ThemeOf→GM composition
- cholinergic system→ThemeOf→circRNAs
|
263 |
34045460 |
5764 |
Methanogens described in the human microbiota include Euryarchaeota (including M. smithii, M. oralis, M. arbophilus, M. massiliensis, M. luminyensis, M. stadtmanae, Ca. |
- Euryarchaeota→ThemeOf→M. luminyensis
- M. luminyensis→ThemeOf→Euryarchaeota
- M. massiliensis→ThemeOf→Euryarchaeota
- Euryarchaeota→ThemeOf→M. massiliensis
|
264 |
34045460 |
5769 |
One clinical investigation showed that a negative association between methane concentrations in breath and anthropometric biomarkers of obesity, and that methane significantly decreased the neurological deficit induced by cerebral ischemia and reperfusion via the antioxidant pathway of PI3K/Akt/HO-1. |
- methane→CauseOf→breath
- breath→ThemeOf→cerebral ischemia
- neurological deficit→ThemeOf→decreased
- methane→CauseOf→decreased
- breath→CauseOf→methane
- neurological deficit→ThemeOf→HO-1
- cerebral ischemia→CauseOf→methane
- methane→CauseOf→neurological deficit
- breath→ThemeOf→obesity
- HO-1→ThemeOf→cerebral ischemia
- cerebral ischemia→ThemeOf→obesity
- methane→ThemeOf→HO-1
- breath→ThemeOf→decreased
- HO-1→ThemeOf→methane
- cerebral ischemia→ThemeOf→breath
- obesity→ThemeOf→cerebral ischemia
- breath→ThemeOf→neurological deficit
- HO-1→ThemeOf→obesity
- cerebral ischemia→ThemeOf→decreased
- obesity→CauseOf→methane
- breath→ThemeOf→HO-1
- HO-1→ThemeOf→breath
- cerebral ischemia→ThemeOf→neurological deficit
- obesity→ThemeOf→breath
- neurological deficit→ThemeOf→cerebral ischemia
- HO-1→ThemeOf→decreased
- cerebral ischemia→ThemeOf→HO-1
- obesity→ThemeOf→decreased
- neurological deficit→CauseOf→methane
- HO-1→ThemeOf→neurological deficit
- methane→CauseOf→cerebral ischemia
- obesity→ThemeOf→neurological deficit
- neurological deficit→ThemeOf→obesity
- methane→CauseOf→obesity
- obesity→ThemeOf→HO-1
- neurological deficit→ThemeOf→breath
|
265 |
34045460 |
5785 |
Neuronal ACh and non-neuronal ACh have been demonstrated to modulate the inflammatory response: ACh protects against C. albicans infection by inhibiting biofilm formation and promoting hemocyte function in a model of Galleria mellonella infection. |
- ACh→CauseOf→promoting
- protects→CauseOf→inhibiting
- inhibiting→CauseOf→protects
- protects→CauseOf→promoting
- inhibiting→CauseOf→promoting
- promoting→CauseOf→protects
- promoting→CauseOf→inhibiting
- Galleria mellonella infection→CauseOf→ACh
- hemocyte function→CauseOf→ACh
- ACh→CauseOf→biofilm
- ACh→CauseOf→Galleria mellonella infection
- biofilm→CauseOf→ACh
- ACh→CauseOf→protects
- ACh→CauseOf→hemocyte function
- ACh→CauseOf→inhibiting
|
266 |
34045460 |
5800 |
Furthermore, expression of retinoic acid-inducible gene I supported the notion that too much of a HSHF diet affects immunity and increases the risk of virus invasion (p < 0.05) (Fig. |
- affects→CauseOf→increases
- increases→CauseOf→affects
- retinoic acid-inducible gene I→ThemeOf→increases
- too→CauseOf→increases
- retinoic acid-inducible gene I→ThemeOf→too
- too→CauseOf→affects
- retinoic acid-inducible gene I→ThemeOf→affects
- too→ThemeOf→retinoic acid-inducible gene I
|
267 |
34045460 |
5812 |
S5), including Butyrivibrio hungatei, Anaerostipes hadrus, Butyrivibrio proteoclasticus, Blautia sp. |
- Butyrivibrio proteoclasticus→ThemeOf→Blautia
- Anaerostipes→ThemeOf→Blautia
- Butyrivibrio→CauseOf→Blautia
- Blautia→CauseOf→Butyrivibrio
- Blautia→ThemeOf→Butyrivibrio proteoclasticus
- Blautia→ThemeOf→Anaerostipes
|
268 |
34074340 |
5879 |
Because alleles at lower frequencies are less informative for association analysis, we retained only SNPs with minor allele frequencies (MAFs) above 5% and kept only SNPs that occurred in more than 95% of individuals. |
- MAF→CauseOf→SNPs
- SNPs→CauseOf→MAF
|
269 |
34074340 |
5893 |
The covariates included the top five host genetic principal components and first three principal components of significant and suggestive significant SNPs associated with RFI. |
- SNPs→ThemeOf→RFI
- RFI→ThemeOf→SNPs
|
270 |
34074340 |
5907 |
The most significant SNP controlling the relative abundance of Parabacteroides was rs10730843 (Fig. |
- Parabacteroides→ThemeOf→controlling
- Parabacteroides→ThemeOf→rs10730843
- rs10730843→ThemeOf→relative abundance
- rs10730843→ThemeOf→Parabacteroides
- rs10730843→CauseOf→controlling
- relative abundance→ThemeOf→controlling
- relative abundance→ThemeOf→rs10730843
|
271 |
34074340 |
5909 |
The substitution of G to A for rs10730843 resulted in a significantly increased abundance of cecal Parabacteroides (Fig. |
- rs10730843→CauseOf→increased
|
272 |
34074340 |
5913 |
Chickens with the TT genotype of rs314988200 had a higher abundance of cecal Megasphaera (0.19%) than those with the CT and CC genotypes (0.12% and 0.07%, respectively; Fig. |
- cecal Megasphaera→ThemeOf→abundance
- cecal Megasphaera→ThemeOf→rs314988200
- cecal Megasphaera→ThemeOf→higher
- abundance→ThemeOf→rs314988200
- abundance→ThemeOf→higher
- abundance→ThemeOf→cecal Megasphaera
- rs314988200→ThemeOf→abundance
- rs314988200→CauseOf→higher
- rs314988200→ThemeOf→cecal Megasphaera
|
273 |
34074340 |
5918 |
We found that 4 suggestive significant SNPs were related to RFI (Fig. |
- SNPs→ThemeOf→RFI
- SNPs→CauseOf→related
- RFI→ThemeOf→SNPs
- RFI→ThemeOf→related
|
274 |
34074340 |
5919 |
Among them, rs313164887 and rs312419026 resided in the intronic region of ELOVL fatty acid elongase 2 (ELOVL2) and phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1 (PREX1), respectively. |
- rs313164887→ThemeOf→ELOVL fatty acid elongase 2
- rs312419026→ThemeOf→ELOVL fatty acid elongase 2
- ELOVL fatty acid elongase 2→ThemeOf→rs312419026
- ELOVL fatty acid elongase 2→ThemeOf→rs313164887
|
275 |
34074340 |
5920 |
The other two variations, rs317782869 and rs316904613, were near the gene transient receptor potential cation channel subfamily A member 1 (TRPA1) and PREX1, respectively. |
- PREX1→ThemeOf→rs317782869
- variations→ThemeOf→TRPA1
- rs317782869→ThemeOf→TRPA1
- variations→ThemeOf→PREX1
- rs317782869→ThemeOf→PREX1
- rs316904613→ThemeOf→TRPA1
- rs316904613→ThemeOf→PREX1
- TRPA1→ThemeOf→variations
- TRPA1→ThemeOf→rs316904613
- TRPA1→ThemeOf→rs317782869
- PREX1→ThemeOf→variations
- PREX1→ThemeOf→rs316904613
|
276 |
34074340 |
5921 |
In particular, rs316904613 and rs312419026 were highly linked to each other. |
- rs316904613→CauseOf→linked
- rs312419026→CauseOf→linked
|
277 |
34074340 |
5923 |
The variation in rs317782869 resulted from a base transversion (A/C). |
- variation→CauseOf→resulted from
- variation→ThemeOf→base transversion
- rs317782869→CauseOf→resulted from
- rs317782869→ThemeOf→base transversion
- base transversion→ThemeOf→rs317782869
- base transversion→ThemeOf→resulted from
- base transversion→ThemeOf→variation
|
278 |
34074340 |
5925 |
Regarding the SNP rs316904613, the G to C substitution led to a significant decrease in the RFI value (Fig. |
- G to C→ThemeOf→RFI
- G to C→CauseOf→decrease
- RFI→ThemeOf→G to C
- RFI→ThemeOf→decrease
|
279 |
34074340 |
5927 |
Ileal Janthinobacterium and duodenal unclassified Peptostreptococcaceae were close to the significance level at the SNPs of rs313164887 and rs317782869, receptively (Fig. |
- rs313164887→ThemeOf→Peptostreptococcaceae
- rs317782869→ThemeOf→Peptostreptococcaceae
- Peptostreptococcaceae→ThemeOf→rs313164887
- Peptostreptococcaceae→ThemeOf→rs317782869
|
280 |
34074340 |
5959 |
A recent study identified several genetic variants involved in the immune response and metabolism that were significantly associated with microbial diversity in the cecum of chickens. |
- variants→ThemeOf→microbial
- variants→CauseOf→associated
- microbial→ThemeOf→variants
- microbial→ThemeOf→associated
|
281 |
34074340 |
5975 |
We then identified three suggestive significant loci:rs317782869, rs313164887, and rs316904613:which were near or distributed on three independent genes: TRPA1, ELOVL2, and PREX1. |
- rs313164887→ThemeOf→TRPA1
- rs317782869→ThemeOf→ELOVL2
- rs313164887→ThemeOf→ELOVL2
- rs317782869→ThemeOf→PREX1
- rs313164887→ThemeOf→PREX1
- ELOVL2→ThemeOf→rs316904613
- rs316904613→ThemeOf→TRPA1
- ELOVL2→ThemeOf→rs313164887
- rs316904613→ThemeOf→ELOVL2
- ELOVL2→ThemeOf→rs317782869
- rs316904613→ThemeOf→PREX1
- PREX1→ThemeOf→rs316904613
- TRPA1→ThemeOf→rs316904613
- PREX1→ThemeOf→rs313164887
- TRPA1→ThemeOf→rs313164887
- PREX1→ThemeOf→rs317782869
- TRPA1→ThemeOf→rs317782869
- rs317782869→ThemeOf→TRPA1
|
282 |
34074340 |
5986 |
A significant difference in RFI was found among chicken individuals differing at specific genetic loci: rs317782869, rs313164887, and rs316904613. |
- rs317782869→ThemeOf→RFI
- RFI→ThemeOf→rs317782869
- RFI→ThemeOf→rs316904613
- RFI→ThemeOf→rs313164887
- rs316904613→ThemeOf→RFI
- rs313164887→ThemeOf→RFI
|
283 |
34074340 |
6012 |
Our study strengthens the notion that both host genetic and gut microbial variations can lead to variation in feed efficiency. |
- variations→CauseOf→lead to variation
|
284 |
34526973 |
6026 |
Moreover, Dajiang samples also contained abundant Pseudomonas, and Brevundimonas spp., while Halomonas, Staphylococcus, Lysinibacillus, Enterobacter, Streptococcus, Acinetobacter, and Halanaerobium spp. |
- Halomonas→ThemeOf→Pseudomonas
- Pseudomonas→ThemeOf→Halomonas
|
285 |
34526973 |
6043 |
Specifically, reported that Lactobacillus sakei, Pediococcus acidilactici, and Weissella thailandensis significantly impact the quality of fermented sausage, while their metabolites provide a flavour profile. |
- Weissella→CauseOf→impact
|
286 |
34526973 |
6091 |
At the genera level (Figure 4C), Bacillus, Lactobacillus, Tetragenococcus, and Weissella were the most abundant in the two groups. |
- Tetragenococcus→ThemeOf→abundant
- Tetragenococcus→ThemeOf→Weissella
- Weissella→CauseOf→abundant
- Weissella→ThemeOf→Lactobacillus
- Weissella→ThemeOf→Tetragenococcus
- Weissella→ThemeOf→Bacillus
- Bacillus→ThemeOf→abundant
- Bacillus→ThemeOf→Weissella
- Lactobacillus→ThemeOf→abundant
- Lactobacillus→ThemeOf→Weissella
|
287 |
34530890 |
6219 |
The maximum hydrogen yields of the strain isolated from green waste were higher than those previously reported in the literature for other hydrogen-producing bacteria like C. perfringens 130 +- 3 mL of H2 per g of glucose; C. butyricum 136 +- 5 mL of H2 per g of glucose; C. diolis 150 mL of H2 per g of glucose; C. beijerinckii Fanp3 231 mL of H2 per g of glucose and C. tyrobutyricum JM1 223 ml of H2 per g of hexose. |
- C. beijerinckii→CauseOf→higher
|
288 |
34530890 |
6233 |
Here, the gene expression modulation in time of the seven genes encoding for [FeFe]-hydrogenase enzymes with different structure types was investigated by RT-qPCR in the hydrogen-producing real biomasses waste, hence in presence of the autochthonous strains, both for the non-producers and the hydrogen-producing strains, either with applied bio-augmentation or not. |
- RT-qPCR→CauseOf→modulation
- RT-qPCR→ThemeOf→gene expression
- gene expression→ThemeOf→modulation
- gene expression→ThemeOf→RT-qPCR
|
289 |
34530890 |
6260 |
During the first 23 h of dark fermentation, transcription levels of the genes encoding for the monomeric Cbei_1773 and the heterotrimeric Cbei_4110 [FeFe]-hydrogenases followed the same trend observed for hydrogen production; transcription levels of the gene encoding for monomeric Cbei_0327 showed a reverse trend compared with that of hydrogen. |
- monomeric Cbei_0327→ThemeOf→transcription
- transcription→ThemeOf→transcription
- monomeric Cbei_0327→ThemeOf→Cbei_1773
- transcription→ThemeOf→monomeric Cbei_0327
- monomeric Cbei_0327→ThemeOf→transcription
- transcription→ThemeOf→Cbei_1773
- Cbei_1773→ThemeOf→transcription
- transcription→ThemeOf→Cbei_0327
- Cbei_1773→ThemeOf→monomeric Cbei_0327
- Cbei_1773→ThemeOf→Cbei_0327
- transcription→ThemeOf→monomeric Cbei_0327
- Cbei_1773→ThemeOf→transcription
- transcription→ThemeOf→Cbei_1773
- Cbei_0327→ThemeOf→transcription
- transcription→ThemeOf→Cbei_0327
- Cbei_0327→ThemeOf→Cbei_1773
- transcription→ThemeOf→transcription
- Cbei_0327→ThemeOf→transcription
|
290 |
34530890 |
6262 |
A relatively high hydrogen production level has been reported in Clostridia even at low transcripts amounts, given the good stability of the [FeFe] hydrogenases as active enzymes in the cell, which could explain the relatively high hydrogen accumulation between 23 and 144 h even with low transcripts detected at 72 and 144 h. In summary genes Cbei_1773, Cbei_4110, Cbei_0327 and Cbei_1901, which undergo larger changes in expression, seem to be related to hydrogen production, although with positive (Cbei_1773 and Cbei_4110) or negative (Cbei_0327) correlations, hence it would be interesting to further investigate their metabolic roles. |
- Cbei_1773→CauseOf→related
- Cbei_1773→ThemeOf→hydrogen production
- Cbei_1773→CauseOf→related
- Cbei_1773→ThemeOf→hydrogen production
- hydrogen production→ThemeOf→related
- Cbei_4110→CauseOf→related
- hydrogen production→ThemeOf→Cbei_1773
- Cbei_4110→ThemeOf→hydrogen production
- hydrogen production→ThemeOf→Cbei_1773
- Cbei_4110→CauseOf→related
- hydrogen production→ThemeOf→Cbei_4110
- Cbei_4110→ThemeOf→hydrogen production
- hydrogen production→ThemeOf→Cbei_4110
- Cbei_0327→CauseOf→related
- hydrogen production→ThemeOf→Cbei_0327
- Cbei_0327→ThemeOf→hydrogen production
|
291 |
34530890 |
6263 |
In particular, the positive correlation of hydrogen production with Cbei_1773 is relevant given the attested good productivity and the oxygen-tolerance unique feature of the hydrogenase encoded by this gene. |
- hydrogen production→ThemeOf→positive
- hydrogen production→ThemeOf→Cbei_1773
- Cbei_1773→CauseOf→positive
- Cbei_1773→ThemeOf→hydrogen production
|
292 |
34530890 |
6264 |
Genes Cbei_4000 and Cbei_3796 are possibly less related to hydrogen production and might be silent during dark fermentation. |
- Cbei_4000→ThemeOf→hydrogen production
- Cbei_4000→CauseOf→less
- Cbei_4000→CauseOf→related
- Cbei_3796→ThemeOf→hydrogen production
- hydrogen production→ThemeOf→less
- Cbei_3796→CauseOf→less
- hydrogen production→ThemeOf→related
- Cbei_3796→CauseOf→related
- hydrogen production→ThemeOf→Cbei_4000
- hydrogen production→ThemeOf→Cbei_3796
- less→CauseOf→related
- related→CauseOf→less
|
293 |
34771152 |
6422 |
Furthermore, we divided the cobalamin biosynthetic pathways into three:aerobic and anaerobic biosynthesis of cob(II)yrinate a,c-diamide and biosynthesis of cobalamin from cob(II)yrinate a,c-diamide. |
- biosynthesis→CauseOf→cob
- biosynthesis→CauseOf→cob
- cob→CauseOf→biosynthesis
- cob→CauseOf→biosynthesis
- cob→CauseOf→biosynthesis
- cob→CauseOf→biosynthesis
- biosynthesis→ThemeOf→biosynthesis
- biosynthesis→CauseOf→cob
- biosynthesis→CauseOf→cob
- biosynthesis→ThemeOf→biosynthesis
|
294 |
34771152 |
6429 |
In the studied the BC metagenome analysis showed that 32 PEGs were involved in the major biosynthetic pathways of tetrapyrrole cofactor (Table S2). |
- PEGs→CauseOf→involved
|
295 |
34771152 |
6436 |
In the metagenome of BC, PEGs of all enzymes involved in the biosynthesis of uroporphyrinogen III using L-glutamate as the starting substrate were detected. |
- uroporphyrinogen III→ThemeOf→PEGs
- PEGs→ThemeOf→uroporphyrinogen III
|
296 |
34771152 |
6439 |
The metagenomic analysis of the study showed the presence of PEGs of both enzymes. |
- PEGs→CauseOf→presence
|
297 |
34771152 |
6441 |
In the studied BC, the PEG of the HemD enzyme was observed, but the matching PSs were not detected. |
- PEG→CauseOf→observed
|
298 |
34771152 |
6449 |
The metagenomic analysis of the study showed the presence of PEGs of all enzymes, and metaproteomic analysis showed eight PSs matching both enzymes. |
- PEGs→CauseOf→presence
|
299 |
34771152 |
6452 |
The metagenome of BC analyzed in this study showed the presence of PEG of HemE and four PSs matching the enzyme. |
- PEG→CauseOf→presence
|
300 |
34771152 |
6454 |
The presence of PEGs of both enzymes and one PSs matching HemF and four PSs matching HemN were detected in analyses in the studied BC. |
- PEGs→ThemeOf→PSs matching HemF
- PEGs→CauseOf→presence
- HemN→ThemeOf→PSs matching HemF
- HemN→ThemeOf→presence
- HemN→ThemeOf→PEGs
- PSs matching HemF→ThemeOf→HemN
- PSs matching HemF→ThemeOf→presence
- PSs matching HemF→ThemeOf→PEGs
- PEGs→ThemeOf→HemN
|
301 |
34771152 |
6456 |
In the BC metagenome, only PEGs of the latter enzyme HemJ were detected, whereas no PSs matching the enzyme HemJ were identified. |
- PEGs→ThemeOf→HemJ
- HemJ→ThemeOf→PEGs
|
302 |
34771152 |
6460 |
The study results showed the presence of PEGs of both enzymes; however, four PSs matching only enzyme Cox15 were detected. |
- Cox15→ThemeOf→presence
- PEGs→CauseOf→presence
- PEGs→ThemeOf→enzyme Cox15
- PEGs→ThemeOf→Cox15
- enzyme Cox15→ThemeOf→PEGs
- enzyme Cox15→ThemeOf→presence
- Cox15→ThemeOf→PEGs
|
303 |
34771152 |
6465 |
The results of this study showed PEG of HemH and five PSs of this enzyme in the investigated BC. |
- HemH→ThemeOf→PEG
- PEG→ThemeOf→HemH
|
304 |
34771152 |
6466 |
Further, decarboxylation of Fe-coproporphyrin III substituents by hydrogen peroxide-dependent heme synthase (HemQ) or AdoMet-dependent heme synthase (Ahbd) results in the formation of heme B. |
- heme B→ThemeOf→decarboxylation
- heme B→ThemeOf→formation
- Ahbd→ThemeOf→decarboxylation
- Ahbd→ThemeOf→heme B
- Ahbd→ThemeOf→formation
- decarboxylation→ThemeOf→Ahbd
- decarboxylation→ThemeOf→heme B
- decarboxylation→CauseOf→formation
- heme B→ThemeOf→Ahbd
|
305 |
34771152 |
6467 |
The results showed PEG matching only HemQ enzyme in the studied BC, whereas no PSs matching the enzyme HemQ or Ahbd were detected. |
- PEG→ThemeOf→HemQ
- HemQ→ThemeOf→PEG
|
306 |
34771152 |
6471 |
In the investigated BC, only PEG of Ahbab was detected, but no PSs of any of these enzymes were found. |
- PEG→ThemeOf→Ahbab
- Ahbab→ThemeOf→PEG
|
307 |
34771152 |
6476 |
Metagenomic results of this study showed only PEG of HemQ; however, no PSs matching HemQ or Ahbd enzyme were detected. |
- PEG→ThemeOf→HemQ
- PEG→ThemeOf→Ahbd
- HemQ→ThemeOf→PEG
- Ahbd→ThemeOf→PEG
|
308 |
34771152 |
6481 |
The results showed that only PEGs of CbiK and CobN were involved in anaerobic and aerobic pathways, respectively, and the metaproteome of BC had two PSs matching CobB-CbiA. |
- CobN→ThemeOf→PEGs
- PEGs→ThemeOf→CobN
- CobN→ThemeOf→metaproteome
- PEGs→CauseOf→involved
- CobN→ThemeOf→involved
- PEGs→ThemeOf→CbiK
- CbiK→ThemeOf→PEGs
- CbiK→ThemeOf→metaproteome
- metaproteome→ThemeOf→CobN
- CbiK→ThemeOf→involved
- metaproteome→ThemeOf→CbiK
|
309 |
34771152 |
6484 |
Cobalamin formation reactions can be carried out by using cob(II)yrinate a,c-diamide or cob(I)yrinate a, c diamide to form adenosyl cobyrinate a, c diamide. |
- cob→CauseOf→adenosyl cobyrinate a
- adenosyl cobyrinate a→CauseOf→cob
|
310 |
34771152 |
6490 |
The PEG of CobQ was detected in this study, but the PS matching this enzyme was not found in the investigated BC. |
- PEG→ThemeOf→CobQ
- CobQ→ThemeOf→PEG
|
311 |
34771152 |
6493 |
The results of this study showed PEG of CbiB, but PS matching this enzyme was not detected in the BC. |
- PEG→ThemeOf→CbiB
- CbiB→ThemeOf→PEG
|
312 |
34771152 |
6496 |
This study showed PEG of CobP and five PSs matching this enzyme. |
- PEG→ThemeOf→CobP
- CobP→ThemeOf→PEG
|
313 |
34771152 |
6505 |
The results showed PEG of PhpB, but PSs matching this enzyme were absent. |
- PhpB→ThemeOf→absent
- PhpB→ThemeOf→PEG
- PEG→ThemeOf→PhpB
- PEG→CauseOf→absent
|
314 |
34771152 |
6507 |
PEGs of TonB, ExbB, and ExbD were identified in the BC metagenome. |
- PEGs→ThemeOf→TonB
- TonB→ThemeOf→PEGs
|
315 |
34771152 |
6522 |
For example, 66% of PEGs and 33% of PSs were identified in the coproporphyrin-dependent pathway of heme biosynthesis. |
- PEGs→ThemeOf→coproporphyrin-dependent
- coproporphyrin-dependent→ThemeOf→PEGs
|
316 |
34771152 |
6557 |
According to a study by Lawrence et al., cob(II)yrinate diamide may be extracted from the medium and converted to cobalamin. |
- cob→CauseOf→cobalamin
- cobalamin→CauseOf→cob
- cobalamin→ThemeOf→converted
- cob→CauseOf→converted
|
317 |
34771152 |
6560 |
Various studies have shown that CobB-CbiA is utilized in the acetylation of proteins in the metabolism of microorganisms. |
- CobB-CbiA→ThemeOf→acetylation
- acetylation→ThemeOf→CobB-CbiA
|
318 |
34991191 |
9126 |
CSI, L. helveticus, and L. paralimentarius accelerated the decline of silage pH. |
- L. paralimentarius→CauseOf→accelerated
|
319 |
34991191 |
9128 |
Silage inoculated with L. paralimentarius produced less acetic acid and butyric acid. |
- L. paralimentarius→CauseOf→less
|
320 |
34991191 |
9158 |
Similar results were observed in the major bacterial genera in all FTMRs belonging to Lactobacillus, covering more than 85% relative abundance, while Weissella, Pediococcus, Bacillus, Geobacillus, Staphylococcus, Paenibacillus, Erwinia, Xanthomonas, and Corynebacterium occupied the remaining portion (Figure 1a). |
- Weissella→ThemeOf→Geobacillus
- Weissella→ThemeOf→Erwinia
- Bacillus→ThemeOf→Weissella
- Geobacillus→ThemeOf→Weissella
- Erwinia→ThemeOf→Weissella
- Weissella→ThemeOf→Bacillus
|
321 |
34991191 |
9185 |
In the current selected FTMRs, the dominant bacteria during ensiling belonged to the phylum Firmicute, comprising genera Lactobacillus, Lactococcus, Weissella, and Leuconostoc, while Lactobacillus exceeded 85% relative abundance. |
- Lactobacillus→ThemeOf→Weissella
- Weissella→ThemeOf→Leuconostoc
- Weissella→ThemeOf→Lactococcus
- Weissella→ThemeOf→Lactobacillus
- Leuconostoc→ThemeOf→Weissella
- Lactococcus→ThemeOf→Weissella
|
322 |
34991191 |
9190 |
However, L. pontis (DSM 8475) was eliminated from the list during ensiling because of its slow growth. |
- L. pontis→ThemeOf→eliminated
- L. pontis→ThemeOf→DSM 8475
- DSM 8475→ThemeOf→L. pontis
- DSM 8475→CauseOf→eliminated
|
323 |
34991191 |
9215 |
The current study supports the hypothesis that the homofermentative strain L. paralimentarius accelerated the decrease in pH values of corn stover silage. |
- L. paralimentarius→ThemeOf→pH values of corn stover silage
- L. paralimentarius→CauseOf→accelerated
- accelerated→CauseOf→decrease
- decrease→CauseOf→accelerated
- pH values of corn stover silage→ThemeOf→decrease
- pH values of corn stover silage→ThemeOf→L. paralimentarius
- pH values of corn stover silage→ThemeOf→accelerated
- L. paralimentarius→CauseOf→decrease
|
324 |
34991191 |
9224 |
Similar to the effects of CSI, L. paralimentarius was highly effective in reducing the pH value and producing lactic acid in corn stover silage, which indicated that L. paralimentarius may be a promising ensiling inoculant for corn stover silage. |
- L. paralimentarius→CauseOf→lactic acid
- L. paralimentarius→CauseOf→pH value
- lactic acid→ThemeOf→reducing
- lactic acid→ThemeOf→pH value
- lactic acid→CauseOf→L. paralimentarius
- pH value→ThemeOf→reducing
- pH value→ThemeOf→lactic acid
- pH value→CauseOf→L. paralimentarius
- L. paralimentarius→CauseOf→reducing
|
325 |
35010147 |
6842 |
According to the report of Zhanggen et al., Lactobacillus and Pediococcus are the dominant bacterial genus in Suancai, which includes species such as Pediococcus parvulus, Loigolactobacillus coryniformis, Lactiplantibacillus pentosus, and Levilactobacillus parabrevis. |
- Pediococcus→CauseOf→Levilactobacillus
- Pediococcus→CauseOf→Lactiplantibacillus pentosus
- Levilactobacillus→CauseOf→Pediococcus
- Lactiplantibacillus pentosus→CauseOf→Pediococcus
|
326 |
35010147 |
6868 |
As displayed in Figure 1, the pH values of the four traditionally fermented vegetable samples ranged from 3.33 to 7.10, with PBN samples having the lowest pH value, and significantly lowered than SFWC samples. |
- lowered→CauseOf→lowest
- pH value→ThemeOf→lowered
- PBN→CauseOf→lowest
- pH value→ThemeOf→PBN
- PBN→CauseOf→lowered
- pH value→ThemeOf→pH values
- PBN→ThemeOf→pH values
- PBN→ThemeOf→pH value
- pH values→ThemeOf→lowest
- pH values→ThemeOf→lowered
- pH values→ThemeOf→PBN
- pH values→ThemeOf→pH value
- lowest→CauseOf→lowered
- pH value→ThemeOf→lowest
|
327 |
35010147 |
6884 |
The abundance of Cyanobacteria was relatively higher in SFWC (82.6%), followed by PP (40.6%), PC (38.1%), and PBN (3.8%). |
- abundance→ThemeOf→SFWC
- abundance→ThemeOf→higher
- Cyanobacteria→ThemeOf→SFWC
- Cyanobacteria→ThemeOf→higher
- Cyanobacteria→ThemeOf→abundance
- SFWC→ThemeOf→Cyanobacteria
- SFWC→CauseOf→higher
- SFWC→ThemeOf→abundance
- abundance→ThemeOf→Cyanobacteria
|
328 |
35010147 |
6891 |
However, Lactobacillus was not detected in SFWC samples, while Weissella was the predominant genus in SFWC samples (7.7%). |
- Lactobacillus→ThemeOf→Weissella
- Weissella→ThemeOf→Lactobacillus
|
329 |
35010147 |
6893 |
In addition, Salinivibrio, Weissella, Arcobacter, Halomonas, and Terasakiispira were more abundant in PBN samples. |
- Terasakiispira→ThemeOf→PBN
- Halomonas→ThemeOf→Arcobacter
- Terasakiispira→ThemeOf→Arcobacter
- Halomonas→ThemeOf→Weissella
- Terasakiispira→ThemeOf→Weissella
- Weissella→CauseOf→abundant
- Arcobacter→ThemeOf→abundant
- Weissella→ThemeOf→PBN
- PBN→ThemeOf→abundant
- Arcobacter→ThemeOf→PBN
- Weissella→ThemeOf→Terasakiispira
- PBN→ThemeOf→Terasakiispira
- Arcobacter→ThemeOf→Terasakiispira
- Weissella→ThemeOf→Arcobacter
- PBN→ThemeOf→Arcobacter
- Arcobacter→ThemeOf→Halomonas
- Weissella→ThemeOf→Halomonas
- PBN→ThemeOf→Halomonas
- Arcobacter→ThemeOf→Weissella
- PBN→ThemeOf→Weissella
- Halomonas→ThemeOf→abundant
- Terasakiispira→ThemeOf→abundant
- Halomonas→ThemeOf→PBN
|
330 |
35010147 |
6908 |
Tartaric acid had the greatest effect on the bacterial composition, followed by malic acid, TA, and lactic acid. |
- lactic→ThemeOf→effect
- lactic→ThemeOf→Tartaric
- bacterial composition→ThemeOf→effect
- bacterial composition→ThemeOf→Tartaric
- Tartaric→CauseOf→effect
- Tartaric→ThemeOf→lactic
- Tartaric→ThemeOf→bacterial composition
|
331 |
35010147 |
6947 |
This is the first study to report that tartaric acid and malic acid affect the structure of bacterial communities in fermented vegetables. |
- tartaric→CauseOf→affect
|
332 |
35010147 |
6950 |
Thus, it is necessary to explore the influence of tartaric acid and malic acid on microbial communities in the production of SFWC and PBN samples. |
- tartaric→CauseOf→influence
|
333 |
35010187 |
6971 |
Thirteen kinds of VOCs were different between the two raw materials and the correlation between the microorganisms and VOCs showed that cabbage paocai had stronger correlations than radish paocai for the most significant relationship between 4-isopropylbenzyl alcohol, alpha-cadinol, terpinolene and isobutyl phenylacetate. |
- terpinolene→ThemeOf→stronger
- cabbage→CauseOf→stronger
- isobutyl phenylacetate→ThemeOf→stronger
- terpinolene→ThemeOf→4-isopropylbenzyl alcohol
- cabbage→ThemeOf→terpinolene
- isobutyl phenylacetate→ThemeOf→terpinolene
- terpinolene→ThemeOf→cabbage
- cabbage→ThemeOf→4-isopropylbenzyl alcohol
- isobutyl phenylacetate→ThemeOf→4-isopropylbenzyl alcohol
- terpinolene→ThemeOf→alpha-cadinol
- cabbage→ThemeOf→alpha-cadinol
- isobutyl phenylacetate→ThemeOf→cabbage
- terpinolene→ThemeOf→isobutyl phenylacetate
- cabbage→ThemeOf→isobutyl phenylacetate
- isobutyl phenylacetate→ThemeOf→alpha-cadinol
- 4-isopropylbenzyl alcohol→ThemeOf→stronger
- alpha-cadinol→ThemeOf→stronger
- 4-isopropylbenzyl alcohol→ThemeOf→terpinolene
- alpha-cadinol→ThemeOf→terpinolene
- 4-isopropylbenzyl alcohol→ThemeOf→cabbage
- alpha-cadinol→ThemeOf→4-isopropylbenzyl alcohol
- 4-isopropylbenzyl alcohol→ThemeOf→alpha-cadinol
- alpha-cadinol→ThemeOf→cabbage
- 4-isopropylbenzyl alcohol→ThemeOf→isobutyl phenylacetate
- alpha-cadinol→ThemeOf→isobutyl phenylacetate
|
334 |
35010187 |
7027 |
Among these, linalool registered the highest proportions reaching up to 35% and 41.6% in the red radish and cabbage paocais, respectively, similar to previous studies. |
- linalool→CauseOf→highest
|
335 |
35010187 |
7029 |
Other alcohols were also evaluated to have a positive effect on paocai's flavor with alpha-terpineol contributing a floral typically lilac odor; eucalyptol with a eucalyptus, herbal and camphor odor; and nerol with notes of roses. |
- eucalyptol→CauseOf→contributing
- alpha-terpineol→CauseOf→contributing
|
336 |
35010187 |
7034 |
Among the sulfides, dimethyl disulfide and dimethyl trisulfide were uniquely found in the red radish paocai, whereas 3-butenylisothiocyanate was found to be the unique sulfide in the cabbage paocai. |
- dimethyl→CauseOf→found
- dimethyl→CauseOf→dimethyl trisulfide
- dimethyl trisulfide→CauseOf→dimethyl
- dimethyl trisulfide→ThemeOf→found
|
337 |
35052575 |
7084 |
To better decipher the systems-based link between the metal-microbiome-gut-brain axis, it is important to interpret how microbial dysbiosis, in relation to oxidative stress from metals, leads to a pro-inflammatory environment and how the gut microbiome influences the remediation of xenobiotic metals. |
- gut→ThemeOf→leads to
- remediation→ThemeOf→gut
- gut→ThemeOf→leads to
- dysbiosis→ThemeOf→gut
- gut→ThemeOf→dysbiosis
- remediation→ThemeOf→microbial
- gut→ThemeOf→dysbiosis
- dysbiosis→ThemeOf→influences
- gut→ThemeOf→pro-inflammatory
- remediation→ThemeOf→gut
- gut→ThemeOf→pro-inflammatory
- dysbiosis→ThemeOf→leads to
- microbial→ThemeOf→gut
- remediation→ThemeOf→influences
- influences→CauseOf→leads to
- dysbiosis→ThemeOf→pro-inflammatory
- microbial→ThemeOf→remediation
- remediation→ThemeOf→leads to
- influences→CauseOf→pro-inflammatory
- pro-inflammatory→CauseOf→influences
- microbial→ThemeOf→gut
- remediation→ThemeOf→dysbiosis
- leads to→CauseOf→influences
- pro-inflammatory→CauseOf→leads to
- microbial→CauseOf→influences
- remediation→ThemeOf→pro-inflammatory
- leads to→CauseOf→pro-inflammatory
- gut→ThemeOf→microbial
- microbial→CauseOf→leads to
- gut→ThemeOf→microbial
- dysbiosis→ThemeOf→gut
- gut→ThemeOf→remediation
- microbial→ThemeOf→dysbiosis
- gut→ThemeOf→remediation
- dysbiosis→ThemeOf→microbial
- gut→ThemeOf→influences
- microbial→CauseOf→pro-inflammatory
- gut→ThemeOf→influences
- dysbiosis→ThemeOf→remediation
|
338 |
35052575 |
7093 |
Improper metal binding associated with oxidative stress leads to protein misfolding and aggregation. |
- Improper→ThemeOf→binding
- Improper→CauseOf→leads to
- binding→ThemeOf→leads to
- binding→ThemeOf→Improper
|
339 |
35052575 |
7095 |
Protein misfolding is the hallmark of numerous neurodegenerative diseases such as Alzheimer's Disease, Lewy Body Dementia, Huntington's Disease, and prion diseases, and is similarly underlined with metal stress. |
- misfolding→ThemeOf→Protein
- Alzheimer's Disease→ThemeOf→misfolding
- misfolding→ThemeOf→Huntington's Disease
- misfolding→ThemeOf→Alzheimer's Disease
- Lewy Body Dementia→ThemeOf→misfolding
- misfolding→ThemeOf→prion diseases
- Huntington's Disease→ThemeOf→misfolding
- hallmark of numerous neurodegenerative diseases→ThemeOf→misfolding
- prion diseases→ThemeOf→misfolding
- misfolding→ThemeOf→hallmark of numerous neurodegenerative diseases
- Protein→ThemeOf→misfolding
- misfolding→ThemeOf→Lewy Body Dementia
|
340 |
35052575 |
7101 |
Different valence states or species of Mn (Mn2+ or Mn3+) play significant roles in Mn neurotoxicity, in which Mn3+ is more toxic than Mn2+. |
- neurotoxicity→CauseOf→Mn3+
- Mn3+→CauseOf→neurotoxicity
|
341 |
35052575 |
7119 |
The dysregulation of dopamine transmission from the substantia nigra to the striatum, a region associated with motor symptoms in Mn neurotoxicity, is known to prevent dopamine release, thereby leading to elicit behavioral responses that are similar to both PD and Mn neurotoxicity. |
- neurotoxicity→ThemeOf→prevent
- neurotoxicity→ThemeOf→dopamine transmission
- dopamine transmission→ThemeOf→leading
- dysregulation→ThemeOf→neurotoxicity
- neurotoxicity→ThemeOf→elicit
- neurotoxicity→ThemeOf→dopamine release
- dopamine release→ThemeOf→prevent
- dysregulation→ThemeOf→neurotoxicity
- neurotoxicity→ThemeOf→neurotoxicity
- neurotoxicity→ThemeOf→dysregulation
- dopamine release→ThemeOf→elicit
- dysregulation→ThemeOf→dopamine transmission
- neurotoxicity→ThemeOf→dopamine transmission
- neurotoxicity→ThemeOf→leading
- dopamine release→ThemeOf→neurotoxicity
- dysregulation→ThemeOf→dopamine release
- neurotoxicity→ThemeOf→dopamine release
- dopamine transmission→ThemeOf→prevent
- dopamine release→ThemeOf→neurotoxicity
- dysregulation→CauseOf→leading
- neurotoxicity→ThemeOf→dysregulation
- dopamine transmission→ThemeOf→elicit
- dopamine release→ThemeOf→dopamine transmission
- leading→CauseOf→prevent
- prevent→CauseOf→elicit
- neurotoxicity→ThemeOf→leading
- dopamine transmission→ThemeOf→neurotoxicity
- dopamine release→ThemeOf→dysregulation
- leading→CauseOf→elicit
- prevent→CauseOf→leading
- neurotoxicity→ThemeOf→prevent
- dopamine transmission→ThemeOf→neurotoxicity
- dopamine release→ThemeOf→leading
- elicit→CauseOf→prevent
- neurotoxicity→ThemeOf→elicit
- dopamine transmission→ThemeOf→dopamine release
- dysregulation→CauseOf→prevent
- elicit→CauseOf→leading
- neurotoxicity→ThemeOf→neurotoxicity
- dopamine transmission→ThemeOf→dysregulation
- dysregulation→CauseOf→elicit
|
342 |
35052575 |
7132 |
Hg differs from other metals with regard to cellular transport; it does not require human macrophages or other immuno-transport mechanisms, rather MeHg is readily able to penetrate the blood-brain barrier (BBB). |
- MeHg→CauseOf→penetrate
- age→ThemeOf→MeHg
- age→ThemeOf→penetrate
- MeHg→ThemeOf→age
|
343 |
35052575 |
7139 |
Through these pathomechanisms, MeHg exposure leads to apoptosis and neurotoxicity through dysfunctional cell narrowing, chromatin condensation, the modification of cytochrome C flux, and well-described oxidative stress insults to the mitochondria. |
- MeHg→CauseOf→modification
- leads to→CauseOf→modification
- MeHg→CauseOf→leads to
- modification→CauseOf→leads to
|
344 |
35052575 |
7156 |
Irregularities in the regulation of this gene lead to chronic ferritin release and neurotoxicity. |
- neurotoxicity→ThemeOf→lead
- Irregularities→ThemeOf→regulation
- neurotoxicity→ThemeOf→regulation
- neurotoxicity→ThemeOf→Irregularities
- regulation→ThemeOf→chronic ferritin release
- regulation→ThemeOf→lead
- chronic ferritin release→ThemeOf→lead
- regulation→ThemeOf→neurotoxicity
- chronic ferritin release→ThemeOf→neurotoxicity
- regulation→ThemeOf→Irregularities
- chronic ferritin release→ThemeOf→regulation
- Irregularities→ThemeOf→chronic ferritin release
- chronic ferritin release→ThemeOf→Irregularities
- Irregularities→CauseOf→lead
- neurotoxicity→ThemeOf→chronic ferritin release
- Irregularities→ThemeOf→neurotoxicity
|
345 |
35052575 |
7164 |
However, recent studies highlight that heavy metal exposure alters both the native gut microbiota and intestinal physiology. |
- heavy metal→CauseOf→alters
- heavy metal→ThemeOf→gut
- gut→ThemeOf→heavy metal
- gut→ThemeOf→alters
|
346 |
35052575 |
7165 |
Specifically, additional damage due to heavy metals disruption of the gut epithelium leads to a heightened inflammatory response, thus disrupting GI tight junctions and promoting systemic inflammation by inciting changes in microbial abundance and microbial-mediated metabolic changes. |
- inflammation→ThemeOf→promoting
- disruption→ThemeOf→age
- promoting→CauseOf→heightened
- inflammatory response→ThemeOf→gut
- gut→ThemeOf→disruption
- inflammation→ThemeOf→heightened
- disruption→ThemeOf→gut
- heightened→CauseOf→disrupting
- age→ThemeOf→disrupting
- gut→ThemeOf→heavy metals disruption
- inflammation→ThemeOf→inflammatory response
- heavy metals disruption→CauseOf→disrupting
- heightened→CauseOf→promoting
- age→ThemeOf→inflammation
- gut→ThemeOf→promoting
- inflammation→ThemeOf→age
- heavy metals disruption→ThemeOf→inflammation
- inflammatory response→ThemeOf→disrupting
- age→ThemeOf→disruption
- gut→ThemeOf→heightened
- inflammation→ThemeOf→gut
- heavy metals disruption→CauseOf→promoting
- inflammatory response→ThemeOf→inflammation
- age→ThemeOf→heavy metals disruption
- gut→ThemeOf→inflammatory response
- disrupting→CauseOf→promoting
- disruption→CauseOf→disrupting
- heavy metals disruption→CauseOf→heightened
- inflammatory response→ThemeOf→disruption
- age→ThemeOf→promoting
- disrupting→CauseOf→heightened
- disruption→ThemeOf→inflammation
- heavy metals disruption→ThemeOf→inflammatory response
- inflammatory response→ThemeOf→heavy metals disruption
- age→ThemeOf→heightened
- inflammation→ThemeOf→disrupting
- disruption→CauseOf→promoting
- heavy metals disruption→ThemeOf→age
- inflammatory response→ThemeOf→promoting
- age→ThemeOf→inflammatory response
- inflammation→ThemeOf→disruption
- disruption→CauseOf→heightened
- heavy metals disruption→ThemeOf→gut
- inflammatory response→ThemeOf→heightened
- gut→ThemeOf→disrupting
- inflammation→ThemeOf→heavy metals disruption
- disruption→ThemeOf→inflammatory response
- promoting→CauseOf→disrupting
- inflammatory response→ThemeOf→age
- gut→ThemeOf→inflammation
|
347 |
35052575 |
7208 |
Most recently, berberine supplementation was reported to increase dopamine levels in the brains of mice with PD by modulating the gut microbiota, such as Enterococcus spp.. |
- gut→ThemeOf→increase
- gut→ThemeOf→dopamine levels
- gut→ThemeOf→modulating
- gut→ThemeOf→berberine
- modulating→CauseOf→increase
- increase→CauseOf→modulating
- berberine→CauseOf→increase
- dopamine levels→ThemeOf→increase
- berberine→ThemeOf→dopamine levels
- dopamine levels→ThemeOf→gut
- berberine→ThemeOf→gut
- dopamine levels→ThemeOf→modulating
- berberine→CauseOf→modulating
- dopamine levels→ThemeOf→berberine
|
348 |
35052575 |
7235 |
For example, human colorectal cells with DMT1 expression knocked-down have a decreased uptake of Fe2+, Pb2+, and Cd2+. |
- knocked-down→CauseOf→decreased
|
349 |
35052575 |
7236 |
Organic anion transporters that are involved in intestinal uptake of CH3Hg+ through Zinc carriers (ZIP8 and ZIP14) interact with both Hg2+ and Mn2+. |
- CH3Hg+→CauseOf→involved
- ZIP8→ThemeOf→CH3Hg+
- ZIP8→ThemeOf→involved
- ZIP14→ThemeOf→CH3Hg+
- ZIP14→ThemeOf→involved
- CH3Hg+→ThemeOf→ZIP14
- CH3Hg+→ThemeOf→ZIP8
|
350 |
35052575 |
7258 |
While the uptake mechanisms are not clear, dietary Fe may influence Mn transport through non-competitive mechanisms. |
- dietary→CauseOf→influence
|
351 |
35052575 |
7261 |
LAT-1 is located in endothelial and pericyte cell membranes and recruits MeHg into the brain; the shuttling of MeHg into the brain further induces the dysfunction of astrocytes and pericytes by increasing BBB permeability. |
- shuttling→ThemeOf→dysfunction
- LAT-1→CauseOf→MeHg
- dysfunction→ThemeOf→increasing
- shuttling→CauseOf→induces
- LAT-1→ThemeOf→dysfunction
- induces→CauseOf→increasing
- shuttling→ThemeOf→BBB permeability
- LAT-1→ThemeOf→induces
- BBB permeability→ThemeOf→shuttling
- shuttling→CauseOf→increasing
- LAT-1→ThemeOf→BBB permeability
- BBB permeability→CauseOf→MeHg
- MeHg→CauseOf→LAT-1
- LAT-1→ThemeOf→increasing
- BBB permeability→ThemeOf→LAT-1
- MeHg→CauseOf→dysfunction
- dysfunction→ThemeOf→shuttling
- BBB permeability→ThemeOf→dysfunction
- MeHg→CauseOf→induces
- dysfunction→CauseOf→MeHg
- BBB permeability→ThemeOf→induces
- MeHg→CauseOf→BBB permeability
- dysfunction→ThemeOf→LAT-1
- BBB permeability→ThemeOf→increasing
- MeHg→CauseOf→increasing
- dysfunction→ThemeOf→induces
- increasing→CauseOf→induces
- shuttling→ThemeOf→LAT-1
- LAT-1→ThemeOf→shuttling
- dysfunction→ThemeOf→BBB permeability
|
352 |
35052575 |
7262 |
Specifically, MeHg exposure inhibits aquaporin AQP4 in astrocytes, leading to alterations in water balance and, consequently, contributing to neurodegeneration. |
- leading→CauseOf→inhibits
- alterations→CauseOf→contributing
- AQP4→ThemeOf→leading
- leading→CauseOf→contributing
- neurodegeneration→ThemeOf→leading
- AQP4→ThemeOf→MeHg
- MeHg→CauseOf→leading
- neurodegeneration→ThemeOf→MeHg
- AQP4→ThemeOf→alterations
- MeHg→CauseOf→alterations
- neurodegeneration→ThemeOf→alterations
- AQP4→ThemeOf→neurodegeneration
- MeHg→ThemeOf→neurodegeneration
- neurodegeneration→ThemeOf→inhibits
- AQP4→ThemeOf→inhibits
- MeHg→CauseOf→inhibits
- neurodegeneration→ThemeOf→AQP4
- AQP4→ThemeOf→contributing
- MeHg→ThemeOf→AQP4
- neurodegeneration→ThemeOf→contributing
- contributing→CauseOf→leading
- MeHg→CauseOf→contributing
- inhibits→CauseOf→leading
- contributing→CauseOf→alterations
- alterations→CauseOf→leading
- inhibits→CauseOf→alterations
- contributing→CauseOf→inhibits
- leading→CauseOf→alterations
- alterations→CauseOf→inhibits
- inhibits→CauseOf→contributing
|
353 |
35052575 |
7267 |
Alterations in tight-junction proteins such as ZO-1 translate to uncontrollable Cd uptake in the brain, which in turn induces the impairment of neural tissue functioning. |
- uncontrollable→ThemeOf→Alterations
- Alterations→CauseOf→induces
- uncontrollable→ThemeOf→ZO-1
- ZO-1→ThemeOf→uncontrollable
- uncontrollable→ThemeOf→induces
- ZO-1→ThemeOf→neural tissue functioning
- neural tissue functioning→ThemeOf→uncontrollable
- ZO-1→ThemeOf→Alterations
- neural tissue functioning→ThemeOf→Alterations
- ZO-1→ThemeOf→induces
- neural tissue functioning→ThemeOf→ZO-1
- neural tissue functioning→ThemeOf→induces
- Alterations→ThemeOf→uncontrollable
- Alterations→ThemeOf→neural tissue functioning
- uncontrollable→ThemeOf→neural tissue functioning
- Alterations→ThemeOf→ZO-1
|
354 |
35052575 |
7270 |
Metal stress upon the hippocampus is linked to accelerated aging, memory loss, and dementia. |
- Metal stress→CauseOf→linked
- dementia→ThemeOf→memory loss
- dementia→ThemeOf→Metal stress
- dementia→ThemeOf→linked
- memory loss→ThemeOf→Metal stress
- memory loss→ThemeOf→dementia
- memory loss→ThemeOf→linked
- Metal stress→ThemeOf→memory loss
- Metal stress→ThemeOf→dementia
|
355 |
35052575 |
7280 |
Oxidative stress disrupts gut and BBB barriers, leading to alpha-synuclein misfolding, aggregation, and subsequent neuronal damage in both ENS and CNS. |
- gut→ThemeOf→disrupts
- alpha-synuclein→ThemeOf→leading to
- aggregation→ThemeOf→gut
- alpha-synuclein→ThemeOf→disrupts
- leading to→CauseOf→disrupts
- aggregation→ThemeOf→alpha-synuclein
- disrupts→CauseOf→leading to
- misfolding→ThemeOf→gut
- gut→ThemeOf→misfolding
- misfolding→ThemeOf→alpha-synuclein
- gut→ThemeOf→aggregation
- alpha-synuclein→ThemeOf→misfolding
- misfolding→CauseOf→leading to
- alpha-synuclein→ThemeOf→aggregation
- misfolding→CauseOf→disrupts
- gut→ThemeOf→leading to
|
356 |
35052575 |
7287 |
Alterations in microbiota stimulate ROS production by activating the cytoplasmic NLRP3-associated inflammasome, regulating the maturation and secretion of pro-inflammatory cytokines, such as IL-1beta in epithelial cells, thereby promoting Th17 cell differentiation. |
- microbiota→ThemeOf→promoting
- activating→CauseOf→regulating
- promoting→CauseOf→stimulate
- Alterations→ThemeOf→Th1
- ROS production→ThemeOf→maturation
- maturation→ThemeOf→Alterations
- Th1→ThemeOf→Alterations
- NLRP3→ThemeOf→ROS production
- secretion→ThemeOf→IL-1beta
- microbiota→ThemeOf→Alterations
- IL-1beta→ThemeOf→stimulate
- promoting→CauseOf→activating
- Alterations→ThemeOf→NLRP3
- ROS production→ThemeOf→Th1
- maturation→ThemeOf→ROS production
- Th1→ThemeOf→ROS production
- NLRP3→ThemeOf→maturation
- secretion→ThemeOf→promoting
- microbiota→ThemeOf→ROS production
- IL-1beta→ThemeOf→microbiota
- promoting→CauseOf→regulating
- Alterations→CauseOf→regulating
- ROS production→ThemeOf→NLRP3
- maturation→ThemeOf→Th1
- Th1→ThemeOf→maturation
- NLRP3→ThemeOf→regulating
- secretion→ThemeOf→Alterations
- microbiota→ThemeOf→maturation
- IL-1beta→ThemeOf→activating
- Alterations→CauseOf→stimulate
- Alterations→ThemeOf→secretion
- ROS production→ThemeOf→regulating
- maturation→ThemeOf→NLRP3
- Th1→ThemeOf→regulating
- NLRP3→ThemeOf→secretion
- secretion→ThemeOf→ROS production
- stimulate→CauseOf→activating
- microbiota→ThemeOf→Th1
- IL-1beta→ThemeOf→promoting
- Alterations→ThemeOf→microbiota
- ROS production→ThemeOf→stimulate
- ROS production→ThemeOf→secretion
- maturation→ThemeOf→regulating
- Th1→ThemeOf→secretion
- regulating→CauseOf→stimulate
- secretion→ThemeOf→maturation
- stimulate→CauseOf→promoting
- microbiota→ThemeOf→NLRP3
- IL-1beta→ThemeOf→Alterations
- Alterations→CauseOf→activating
- ROS production→ThemeOf→microbiota
- maturation→ThemeOf→stimulate
- maturation→ThemeOf→secretion
- NLRP3→ThemeOf→stimulate
- regulating→CauseOf→activating
- secretion→ThemeOf→Th1
- stimulate→CauseOf→regulating
- microbiota→ThemeOf→regulating
- IL-1beta→ThemeOf→ROS production
- Alterations→ThemeOf→IL-1beta
- ROS production→ThemeOf→activating
- maturation→ThemeOf→microbiota
- Th1→ThemeOf→stimulate
- NLRP3→ThemeOf→microbiota
- regulating→CauseOf→promoting
- secretion→ThemeOf→NLRP3
- microbiota→ThemeOf→stimulate
- microbiota→ThemeOf→secretion
- IL-1beta→ThemeOf→maturation
- Alterations→CauseOf→promoting
- ROS production→ThemeOf→IL-1beta
- maturation→ThemeOf→activating
- Th1→ThemeOf→microbiota
- NLRP3→ThemeOf→activating
- secretion→ThemeOf→stimulate
- secretion→ThemeOf→regulating
- microbiota→ThemeOf→activating
- activating→CauseOf→stimulate
- IL-1beta→ThemeOf→regulating
- Alterations→ThemeOf→ROS production
- ROS production→ThemeOf→promoting
- maturation→ThemeOf→IL-1beta
- Th1→ThemeOf→activating
- NLRP3→ThemeOf→promoting
- secretion→ThemeOf→microbiota
- microbiota→ThemeOf→IL-1beta
- activating→CauseOf→promoting
- IL-1beta→ThemeOf→secretion
- Alterations→ThemeOf→maturation
- ROS production→ThemeOf→Alterations
- maturation→ThemeOf→promoting
- Th1→ThemeOf→promoting
- NLRP3→ThemeOf→Alterations
- secretion→ThemeOf→activating
|
357 |
35052575 |
7290 |
The changes in the microbiome are related to beneficial effects, such as rebalancing in gut microbial communities, and the attenuation of inflammation, all highlight that modulation of the gut microbiota via inflammasome signaling likely alters brain functioning. |
- modulation→ThemeOf→gut
- modulation→CauseOf→alters
- gut→ThemeOf→brain functioning
- rebalancing→ThemeOf→gut
- brain functioning→ThemeOf→gut
- gut→ThemeOf→modulation
- modulation→ThemeOf→gut
- gut→ThemeOf→alters
- gut→ThemeOf→brain functioning
- modulation→ThemeOf→rebalancing
- gut→ThemeOf→inflammation
- gut→ThemeOf→modulation
- gut→ThemeOf→rebalancing
- gut→ThemeOf→alters
- inflammation→ThemeOf→gut
- gut→ThemeOf→inflammation
- rebalancing→ThemeOf→gut
- brain functioning→ThemeOf→gut
- gut→ThemeOf→rebalancing
- rebalancing→ThemeOf→modulation
- inflammation→ThemeOf→gut
- rebalancing→ThemeOf→alters
|
358 |
35052575 |
7302 |
Mitochondrial oxidative stress further exacerbates ROS production and drives neuroinflammation in the brain by perturbing muscarinic and dopaminergic receptors. |
- ROS production→ThemeOf→perturbing
- Mitochondrial→CauseOf→exacerbates
- ROS production→ThemeOf→Mitochondrial
- Mitochondrial→CauseOf→drives
- inflammation→ThemeOf→ROS production
- exacerbates→CauseOf→drives
- Mitochondrial→CauseOf→perturbing
- inflammation→ThemeOf→exacerbates
- exacerbates→CauseOf→perturbing
- inflammation→ThemeOf→drives
- drives→CauseOf→exacerbates
- inflammation→ThemeOf→perturbing
- drives→CauseOf→perturbing
- inflammation→ThemeOf→Mitochondrial
- perturbing→CauseOf→exacerbates
- ROS production→ThemeOf→inflammation
- perturbing→CauseOf→drives
- ROS production→ThemeOf→exacerbates
- Mitochondrial→ThemeOf→inflammation
- ROS production→ThemeOf→drives
- Mitochondrial→ThemeOf→ROS production
|
359 |
35052575 |
7303 |
Furthermore, the Mn3+ oxidation of dopamine increases the relative concentration of localized, oxidized dopamine, resulting in increased oxidative stress. |
- Mn3+ oxidation→CauseOf→increases
- Mn3+ oxidation→CauseOf→increased
- dopamine→ThemeOf→Mn3+ oxidation
- dopamine→ThemeOf→increases
- dopamine→ThemeOf→increased
- Mn3+ oxidation→ThemeOf→dopamine
- increases→CauseOf→increased
- increased→CauseOf→increases
|
360 |
35052575 |
7307 |
For example, MeHg causes apoptosis within 18 h of exposure by impairing mitochondrial mRNA expression, inciting the mutation of mtDNA, and leading to the excessive production of ROS. |
- excessive→CauseOf→leading to
- mtDNA→ThemeOf→mutation
- mutation→ThemeOf→mitochondrial mRNA
- mitochondrial mRNA→ThemeOf→MeHg
- MeHg→ThemeOf→mtDNA
- production of ROS→ThemeOf→excessive
- excessive→CauseOf→inciting
- mtDNA→ThemeOf→mitochondrial mRNA
- mutation→CauseOf→inciting
- mitochondrial mRNA→ThemeOf→impairing
- MeHg→ThemeOf→mitochondrial mRNA
- production of ROS→ThemeOf→leading to
- excessive→CauseOf→impairing
- mtDNA→ThemeOf→inciting
- mutation→CauseOf→impairing
- mitochondrial mRNA→ThemeOf→production of ROS
- MeHg→CauseOf→inciting
- production of ROS→ThemeOf→mtDNA
- leading to→CauseOf→causes
- mtDNA→ThemeOf→MeHg
- mutation→ThemeOf→production of ROS
- inciting→CauseOf→causes
- MeHg→CauseOf→impairing
- production of ROS→ThemeOf→mutation
- leading to→CauseOf→excessive
- mtDNA→ThemeOf→impairing
- mitochondrial mRNA→ThemeOf→causes
- inciting→CauseOf→excessive
- MeHg→ThemeOf→production of ROS
- production of ROS→ThemeOf→mitochondrial mRNA
- causes→CauseOf→excessive
- leading to→CauseOf→inciting
- mtDNA→ThemeOf→production of ROS
- mitochondrial mRNA→ThemeOf→excessive
- inciting→CauseOf→leading to
- impairing→CauseOf→causes
- production of ROS→ThemeOf→inciting
- causes→CauseOf→leading to
- leading to→CauseOf→impairing
- mutation→CauseOf→causes
- mitochondrial mRNA→ThemeOf→leading to
- inciting→CauseOf→impairing
- impairing→CauseOf→excessive
- production of ROS→ThemeOf→MeHg
- causes→CauseOf→inciting
- mtDNA→ThemeOf→causes
- mutation→CauseOf→excessive
- mitochondrial mRNA→ThemeOf→mtDNA
- MeHg→CauseOf→causes
- impairing→CauseOf→leading to
- production of ROS→ThemeOf→impairing
- causes→CauseOf→impairing
- mtDNA→ThemeOf→excessive
- mutation→CauseOf→leading to
- mitochondrial mRNA→ThemeOf→mutation
- MeHg→CauseOf→excessive
- impairing→CauseOf→inciting
- excessive→CauseOf→causes
- mtDNA→ThemeOf→leading to
- mutation→ThemeOf→mtDNA
- mitochondrial mRNA→ThemeOf→inciting
- MeHg→CauseOf→leading to
- production of ROS→ThemeOf→causes
|
361 |
35052575 |
7367 |
The neurotoxic effects include effects in the dopaminergic function in the striatal zone on the brain, where high rates of both oxygen consumption and metabolic rates are crucial factors for increasing brain sensitivity to oxidative damage.. Additionally, alterations in GABA receptor expression are related to anxiety and depression symptoms, which occur in tandem with IBD. |
- GABA receptor→ThemeOf→alterations
- neurotoxic→ThemeOf→age
- GABA receptor→ThemeOf→related
- expression→ThemeOf→GABA receptor
- IBD→ThemeOf→age
- age→ThemeOf→expression
- age→ThemeOf→IBD
- expression→ThemeOf→age
- alterations→ThemeOf→GABA receptor
- depression symptoms→ThemeOf→age
- age→ThemeOf→neurotoxic
- alterations→CauseOf→related
- GABA receptor→ThemeOf→expression
- age→ThemeOf→anxiety
- alterations→ThemeOf→age
- age→ThemeOf→alterations
- age→ThemeOf→depression symptoms
- anxiety→ThemeOf→age
- age→ThemeOf→related
|
362 |
35052575 |
7393 |
An important example of these transformations is the methylation of heavy metals, which increases their solubility, and thus the potential transport to the brain. |
- methylation→CauseOf→increases
|
363 |
35052575 |
7403 |
Although metals are biologically important, they are usually required in trace amounts, excessive metal accumulation in various organs induces various detrimental intracellular events (oxidative stress, mitochondrial dysfunction, DNA fragmentation, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, and the activation of apoptosis). |
- mitochondrial dysfunction→ThemeOf→autophagy dysregulation
- DNA fragmentation→ThemeOf→mitochondrial dysfunction
- detrimental intracellular events→ThemeOf→metal
- autophagy dysregulation→ThemeOf→activation
- mitochondrial dysfunction→ThemeOf→induces
- DNA fragmentation→ThemeOf→protein
- detrimental intracellular events→ThemeOf→autophagy dysregulation
- autophagy dysregulation→ThemeOf→mitochondrial dysfunction
- protein→ThemeOf→activation
- DNA fragmentation→ThemeOf→detrimental intracellular events
- detrimental intracellular events→ThemeOf→induces
- autophagy dysregulation→ThemeOf→protein
- protein→ThemeOf→mitochondrial dysfunction
- DNA fragmentation→ThemeOf→metal
- metal→CauseOf→activation
- autophagy dysregulation→ThemeOf→DNA fragmentation
- activation→ThemeOf→induces
- protein→ThemeOf→DNA fragmentation
- DNA fragmentation→ThemeOf→autophagy dysregulation
- metal→ThemeOf→mitochondrial dysfunction
- autophagy dysregulation→ThemeOf→detrimental intracellular events
- mitochondrial dysfunction→ThemeOf→activation
- protein→ThemeOf→detrimental intracellular events
- DNA fragmentation→ThemeOf→induces
- metal→ThemeOf→protein
- autophagy dysregulation→ThemeOf→metal
- mitochondrial dysfunction→ThemeOf→protein
- protein→ThemeOf→metal
- detrimental intracellular events→ThemeOf→activation
- metal→ThemeOf→DNA fragmentation
- autophagy dysregulation→ThemeOf→induces
- mitochondrial dysfunction→ThemeOf→DNA fragmentation
- protein→ThemeOf→autophagy dysregulation
- detrimental intracellular events→ThemeOf→mitochondrial dysfunction
- metal→ThemeOf→detrimental intracellular events
- induces→ThemeOf→activation
- mitochondrial dysfunction→ThemeOf→detrimental intracellular events
- protein→ThemeOf→induces
- detrimental intracellular events→ThemeOf→protein
- metal→ThemeOf→autophagy dysregulation
- mitochondrial dysfunction→ThemeOf→metal
- DNA fragmentation→ThemeOf→activation
- detrimental intracellular events→ThemeOf→DNA fragmentation
- metal→CauseOf→induces
|
364 |
35053920 |
7426 |
NSLAB significantly contribute to cheese flavor, texture, nutritional value, and microbial safety in most of the ripened cheese varieties; however, some cheese quality defects and off-flavors, especially in the later phases of ripening, have been attributed to NSLAB. |
- NSLAB→CauseOf→contribute
- cheese flavor→CauseOf→NSLAB
- cheese quality defects→CauseOf→NSLAB
- NSLAB→CauseOf→cheese quality defects
- microbial→CauseOf→NSLAB
- NSLAB→CauseOf→microbial
- NSLAB→CauseOf→cheese flavor
- NSLAB→CauseOf→contribute
- microbial→CauseOf→NSLAB
- NSLAB→CauseOf→cheese quality defects
- cheese quality defects→CauseOf→NSLAB
- cheese flavor→CauseOf→NSLAB
- NSLAB→CauseOf→microbial
- NSLAB→CauseOf→cheese flavor
|
365 |
35053920 |
7497 |
Residual lactose in the curd is rapidly depleted, mainly by NSLAB, during the early stages of ripening. |
- NSLAB→CauseOf→depleted
- NSLAB→ThemeOf→Residual lactose
- Residual lactose→ThemeOf→depleted
- Residual lactose→ThemeOf→NSLAB
|
366 |
35053920 |
7508 |
Citrate, although present at relatively low concentrations in milk (approximately 10 mM), can have a profound impact on cheese aroma. |
- Citrate→ThemeOf→aroma
- Citrate→CauseOf→impact
- aroma→ThemeOf→Citrate
- aroma→ThemeOf→impact
|
367 |
35053920 |
7512 |
Although carbon dioxide is responsible for cavity formation in certain cheese types, regarding flavor development, the co-metabolism of citrate and lactose leads to characteristic C4 aroma compounds, such as diacetyl, acetoin, and 2,3-butanediol. |
- citrate→ThemeOf→diacetyl
- citrate→ThemeOf→C4 aroma
- acetoin→ThemeOf→citrate
- citrate→ThemeOf→acetoin
- acetoin→ThemeOf→leads to
- diacetyl→ThemeOf→citrate
- acetoin→ThemeOf→diacetyl
- diacetyl→ThemeOf→leads to
- diacetyl→ThemeOf→acetoin
- C4 aroma→ThemeOf→citrate
- C4 aroma→ThemeOf→leads to
- citrate→CauseOf→leads to
|
368 |
35053920 |
7527 |
Additionally, esterification of hydroxy-fatty acids produces lactones that also contribute to cheese flavor (Figure 4). |
- esterification→ThemeOf→cheese flavor
- cheese flavor→ThemeOf→lactones
- cheese flavor→ThemeOf→esterification
- cheese flavor→ThemeOf→contribute
- lactones→ThemeOf→esterification
- lactones→ThemeOf→contribute
- lactones→ThemeOf→cheese flavor
- esterification→ThemeOf→lactones
- esterification→CauseOf→contribute
|
369 |
35071941 |
6643 |
also reported that Tetragenococcus, Halanaerobium and Lactobacillus were the dominant bacteria in pla-ra from Northeastern Thailand, while Thakur et al., Lindayani et al. |
- Tetragenococcus→ThemeOf→Lindayani
- Lactobacillus→ThemeOf→Lindayani
- Lindayani→ThemeOf→Tetragenococcus
- Lindayani→ThemeOf→Lactobacillus
|
370 |
35071941 |
6672 |
who noted that E. faecium EM485 and E. faecium EM 925 had surface hydrophobicity values of 8.18% and 11.33% in the presence of n-hexadecane, respectively. |
- EM485→ThemeOf→surface hydrophobicity
- surface hydrophobicity→ThemeOf→EM485
|
371 |
35130830 |
7829 |
Further, the Bray-Curtis dissimilarity was lower for the 16S copy number correction (black circles) compared to the raw data (gray circles) in most samples; only in samples S04, S06, S08, and S18 was the Bray-Curtis dissimilarity higher. |
- S18→ThemeOf→S04
- Bray-Curtis dissimilarity→ThemeOf→lower
- S06→ThemeOf→Bray-Curtis dissimilarity
- S18→ThemeOf→Bray-Curtis dissimilarity
- Bray-Curtis dissimilarity→ThemeOf→S08
- S06→CauseOf→lower
- S18→ThemeOf→Bray-Curtis dissimilarity
- Bray-Curtis dissimilarity→ThemeOf→S04
- S08→ThemeOf→S18
- S18→ThemeOf→S06
- Bray-Curtis dissimilarity→ThemeOf→S18
- S08→ThemeOf→Bray-Curtis dissimilarity
- S18→ThemeOf→lower
- Bray-Curtis dissimilarity→ThemeOf→Bray-Curtis dissimilarity
- S08→ThemeOf→Bray-Curtis dissimilarity
- S18→ThemeOf→S08
- Bray-Curtis dissimilarity→ThemeOf→S06
- S08→CauseOf→lower
- S04→ThemeOf→S18
- Bray-Curtis dissimilarity→ThemeOf→S04
- Bray-Curtis dissimilarity→ThemeOf→lower
- S04→ThemeOf→Bray-Curtis dissimilarity
- Bray-Curtis dissimilarity→ThemeOf→S18
- Bray-Curtis dissimilarity→ThemeOf→S08
- S04→ThemeOf→Bray-Curtis dissimilarity
- Bray-Curtis dissimilarity→ThemeOf→Bray-Curtis dissimilarity
- S06→ThemeOf→S18
- S04→CauseOf→lower
- Bray-Curtis dissimilarity→ThemeOf→S06
- S06→ThemeOf→Bray-Curtis dissimilarity
|
372 |
35130830 |
7836 |
The 16S rRNA GCN had only a major influence on the bias for species with a high average number of copies, namely L. delbrueckii (avg. |
- L. delbrueckii→ThemeOf→bias
- bias→ThemeOf→L. delbrueckii
|
373 |
35204173 |
7849 |
Sprague-Dawley rats were orally administered Bacillus SC06 or SC08 for a 24-day period and thereafter intraperitoneally injected diquat (DQ) to induce oxidative stress. |
- SC06→ThemeOf→SC08
- SC08→ThemeOf→SC06
|
374 |
35204173 |
7850 |
Results showed that Bacillus, particularly SC06 significantly inhibited hepatic injuries, as evidenced by the alleviated damaged liver structure, the decreased levels of ALT, AST, ALP and LDH, and the suppressed mitochondrial dysfunction. |
- SC06→ThemeOf→mitochondrial dysfunction
- mitochondrial dysfunction→ThemeOf→inhibited
- hepatic injuries→ThemeOf→ALP
- levels of ALT→ThemeOf→SC06
- ALP→ThemeOf→decreased
- SC06→ThemeOf→hepatic injuries
- mitochondrial dysfunction→ThemeOf→damaged liver
- decreased→CauseOf→inhibited
- levels of ALT→ThemeOf→mitochondrial dysfunction
- ALP→ThemeOf→inhibited
- SC06→CauseOf→decreased
- mitochondrial dysfunction→ThemeOf→levels of ALT
- inhibited→CauseOf→decreased
- levels of ALT→ThemeOf→hepatic injuries
- ALP→ThemeOf→damaged liver
- SC06→CauseOf→inhibited
- mitochondrial dysfunction→ThemeOf→ALP
- damaged liver→ThemeOf→SC06
- levels of ALT→ThemeOf→decreased
- ALP→ThemeOf→levels of ALT
- SC06→ThemeOf→damaged liver
- hepatic injuries→ThemeOf→SC06
- damaged liver→ThemeOf→mitochondrial dysfunction
- levels of ALT→ThemeOf→inhibited
- SC06→ThemeOf→levels of ALT
- hepatic injuries→ThemeOf→mitochondrial dysfunction
- damaged liver→ThemeOf→hepatic injuries
- levels of ALT→ThemeOf→damaged liver
- SC06→ThemeOf→ALP
- hepatic injuries→ThemeOf→decreased
- damaged liver→ThemeOf→decreased
- levels of ALT→ThemeOf→ALP
- mitochondrial dysfunction→ThemeOf→SC06
- hepatic injuries→ThemeOf→inhibited
- damaged liver→ThemeOf→inhibited
- ALP→ThemeOf→SC06
- mitochondrial dysfunction→ThemeOf→hepatic injuries
- hepatic injuries→ThemeOf→damaged liver
- damaged liver→ThemeOf→levels of ALT
- ALP→ThemeOf→mitochondrial dysfunction
- mitochondrial dysfunction→ThemeOf→decreased
- hepatic injuries→ThemeOf→levels of ALT
- damaged liver→ThemeOf→ALP
- ALP→ThemeOf→hepatic injuries
|
375 |
35204173 |
7853 |
The microbial metagenomic analysis demonstrated that Bacillus, particularly SC06 markedly suppress the metabolic pathways such as carbohydrate metabolism, lipid metabolism, amino acid metabolism and metabolism of cofactors and vitamins. |
- SC06→CauseOf→suppress
|
376 |
35204173 |
7854 |
Furthermore, SC06 decreased the gene abundance of the pathways mediating bacterial replication, secretion and pathogenicity. |
- SC06→CauseOf→decreased
|
377 |
35204173 |
7862 |
It has been reported that in stellate cells, ROS- induced lipid peroxidation activates the inflammation and fibrogenesis, and ultimately causes liver fat accumulation. |
- liver fat accumulation→ThemeOf→fibrogenesis
- causes→CauseOf→activates
- inflammation→ThemeOf→ROS-
- liver fat accumulation→ThemeOf→causes
- ROS-→ThemeOf→liver fat accumulation
- liver fat accumulation→ThemeOf→ROS-
- ROS-→CauseOf→activates
- liver fat accumulation→ThemeOf→inflammation
- ROS-→ThemeOf→fibrogenesis
- activates→CauseOf→causes
- ROS-→CauseOf→causes
- fibrogenesis→ThemeOf→liver fat accumulation
- ROS-→ThemeOf→inflammation
- fibrogenesis→ThemeOf→activates
- inflammation→ThemeOf→liver fat accumulation
- fibrogenesis→ThemeOf→causes
- inflammation→ThemeOf→activates
- fibrogenesis→ThemeOf→ROS-
- inflammation→ThemeOf→fibrogenesis
- liver fat accumulation→ThemeOf→activates
- fibrogenesis→ThemeOf→inflammation
- inflammation→ThemeOf→causes
|
378 |
35204173 |
7863 |
Furthermore, ROS generation promotes hepatic insulin resistance, necro-inflammation and finally leads to hepatocyte apoptosis. |
- necro-inflammation→ThemeOf→promotes
- hepatic insulin→ThemeOf→necro-inflammation
- leads→CauseOf→promotes
- necro-inflammation→ThemeOf→hepatic insulin
- hepatic insulin→ThemeOf→hepatocyte
- ROS→CauseOf→leads
- hepatocyte→ThemeOf→leads
- hepatic insulin→ThemeOf→promotes
- ROS→ThemeOf→necro-inflammation
- hepatocyte→ThemeOf→ROS
- ROS→ThemeOf→hepatocyte
- hepatocyte→ThemeOf→necro-inflammation
- ROS→CauseOf→promotes
- hepatocyte→ThemeOf→promotes
- ROS→ThemeOf→hepatic insulin
- hepatocyte→ThemeOf→hepatic insulin
- necro-inflammation→ThemeOf→leads
- promotes→CauseOf→leads
- necro-inflammation→ThemeOf→ROS
- hepatic insulin→ThemeOf→leads
- necro-inflammation→ThemeOf→hepatocyte
- hepatic insulin→ThemeOf→ROS
|
379 |
35204173 |
7874 |
Although alteration of gut microbiota has been reported to be a useful integrative treatment of chronic liver diseases, few studies have explored the protective effect of probiotics on oxidative stress-induced liver injuries and the underlying mechanisms remain unknown. |
- alteration→ThemeOf→liver diseases
- alteration→ThemeOf→gut microbiota
- gut microbiota→ThemeOf→liver injuries
- liver injuries→ThemeOf→liver diseases
- gut microbiota→ThemeOf→liver diseases
- liver injuries→ThemeOf→alteration
- gut microbiota→ThemeOf→alteration
- liver injuries→ThemeOf→gut microbiota
- liver diseases→ThemeOf→liver injuries
- liver diseases→ThemeOf→alteration
- liver diseases→ThemeOf→gut microbiota
- alteration→ThemeOf→liver injuries
|
380 |
35204173 |
7875 |
Our previous results showed that Bacillus amyloliquefaciens SC06 and Bacillus licheniformis SC08 could alleviate oxidative stress-induced intestinal disorders and apoptosis. |
- apoptosis→ThemeOf→SC08
- apoptosis→ThemeOf→alleviate
- intestinal disorders→ThemeOf→SC06
- intestinal disorders→ThemeOf→apoptosis
- intestinal disorders→ThemeOf→SC08
- SC06→ThemeOf→apoptosis
- intestinal disorders→ThemeOf→alleviate
- SC06→ThemeOf→intestinal disorders
- SC08→ThemeOf→apoptosis
- SC06→CauseOf→alleviate
- SC08→ThemeOf→intestinal disorders
- apoptosis→ThemeOf→SC06
- SC08→CauseOf→alleviate
- apoptosis→ThemeOf→intestinal disorders
|
381 |
35204173 |
7906 |
However, SC06 decreased the tissue damages and reversed to the normal histological structure (Figure 1A). |
- decreased→CauseOf→reversed
- SC06→CauseOf→reversed
- SC06→CauseOf→decreased
- reversed→CauseOf→decreased
|
382 |
35204173 |
7908 |
SC06 administration significantly lowered the increased LDH level caused by DQ exposure. |
- DQ exposure→ThemeOf→SC06
- LDH level→ThemeOf→SC06
- DQ exposure→ThemeOf→LDH level
- increased→CauseOf→lowered
- SC06→CauseOf→lowered
- SC06→ThemeOf→DQ exposure
- SC06→CauseOf→increased
- SC06→ThemeOf→LDH level
- lowered→CauseOf→increased
- LDH level→ThemeOf→lowered
- DQ exposure→ThemeOf→lowered
- LDH level→ThemeOf→DQ exposure
- DQ exposure→ThemeOf→increased
- LDH level→ThemeOf→increased
|
383 |
35204173 |
7913 |
SC06 pretreatment could also significantly decreased ROS production (Figure 2B). |
- SC06→CauseOf→decreased
- SC06→ThemeOf→ROS production
- ROS production→ThemeOf→SC06
- ROS production→ThemeOf→decreased
|
384 |
35204173 |
7915 |
As shown in Figure 2C, a dramatic DeltaPsim reduction was found in DQ-treated rats (p < 0.01) but was reversed by SC06 pretreatment (p < 0.05). |
- DeltaPsim reduction→ThemeOf→DQ-treated
- DQ-treated→ThemeOf→DeltaPsim reduction
|
385 |
35204173 |
7918 |
As displayed in Figure 3A, SC06 pretreatment markedly decreased MDA level induced by DQ exposure. |
- SC06→CauseOf→decreased
|
386 |
35204173 |
7920 |
Only SC06 pretreatment increased SOD activity. |
- SC06→CauseOf→increased
|
387 |
35204173 |
7923 |
Furthermore, SC06 markedly down-regulated the increased expression of NADPH oxidase subunit p47. |
- SC06→CauseOf→increased
- SC06→CauseOf→down-regulated
- SC06→ThemeOf→NADPH
- down-regulated→CauseOf→increased
- increased→CauseOf→down-regulated
- NADPH→ThemeOf→increased
- expression→ThemeOf→increased
- NADPH→ThemeOf→expression
- NADPH→ThemeOf→SC06
- NADPH→ThemeOf→down-regulated
- expression→ThemeOf→NADPH
|
388 |
35204173 |
7925 |
As shown in the PCoA scatterplot, DQ treatment caused a visible shift from the other groups (Figure 4B). |
- visible shift→ThemeOf→DQ treatment
- DQ treatment→CauseOf→caused
- DQ treatment→ThemeOf→visible shift
- visible shift→ThemeOf→caused
|
389 |
35204173 |
7930 |
The f_Bacteroidaceae, g_Bacteroides, s_Blautiaproducta and s_Alistipesindistinctus showed large effect sizes in SC08 + DQ group. |
- g_Bacteroides→ThemeOf→s_Alistipesindistinctus
- s_Alistipesindistinctus→ThemeOf→f_Bacteroidaceae
- s_Alistipesindistinctus→ThemeOf→g_Bacteroides
- f_Bacteroidaceae→ThemeOf→s_Alistipesindistinctus
|
390 |
35204173 |
7932 |
Compared to the DQ group, SC06 pretreatment significantly upregulated the levels of g_Anaerofilum and s_Bacteroides uniformis, and downregulated s_Oscillospira guilliermondil (p < 0.05). |
- s_Bacteroides→ThemeOf→SC06
- s_Oscillospira→ThemeOf→downregulated
- s_Bacteroides→ThemeOf→downregulated
- s_Oscillospira→ThemeOf→upregulated
- s_Bacteroides→ThemeOf→upregulated
- s_Oscillospira→ThemeOf→levels of g_Anaerofilum and
- SC06→CauseOf→downregulated
- s_Bacteroides→ThemeOf→levels of g_Anaerofilum and
- SC06→CauseOf→upregulated
- levels of g_Anaerofilum and→ThemeOf→SC06
- SC06→ThemeOf→s_Bacteroides
- levels of g_Anaerofilum and→ThemeOf→downregulated
- SC06→ThemeOf→levels of g_Anaerofilum and
- levels of g_Anaerofilum and→ThemeOf→upregulated
- SC06→ThemeOf→s_Oscillospira
- levels of g_Anaerofilum and→ThemeOf→s_Bacteroides
- downregulated→CauseOf→upregulated
- levels of g_Anaerofilum and→ThemeOf→s_Oscillospira
- upregulated→CauseOf→downregulated
- s_Oscillospira→ThemeOf→SC06
|
391 |
35204173 |
7933 |
SC08 pretreatment markedly increased the richness of g_Helicobacter (p < 0.05). |
- richness→ThemeOf→g_Helicobacter
- richness→ThemeOf→increased
- SC08→ThemeOf→g_Helicobacter
- SC08→ThemeOf→richness
- SC08→CauseOf→increased
- g_Helicobacter→ThemeOf→SC08
- g_Helicobacter→ThemeOf→richness
- g_Helicobacter→ThemeOf→increased
- richness→ThemeOf→SC08
|
392 |
35204173 |
7943 |
At the first level of KEGG pathways, DQ exposure showed a marked increase in the function of gut microbial metabolism while Bacillus pretreatments, particularly SC06 down-regulated the increased trend (data not shown). |
- increase→CauseOf→down-regulated
- down-regulated→CauseOf→increase
- SC06→ThemeOf→function
- gut microbial metabolism→ThemeOf→SC06
- SC06→CauseOf→increase
- gut microbial metabolism→ThemeOf→function
- SC06→CauseOf→down-regulated
- gut microbial metabolism→ThemeOf→increase
- SC06→ThemeOf→gut microbial metabolism
- gut microbial metabolism→ThemeOf→down-regulated
- function→ThemeOf→SC06
- function→ThemeOf→increase
- function→ThemeOf→down-regulated
- function→ThemeOf→gut microbial metabolism
|
393 |
35204173 |
7944 |
Results from the KEGG second level involving metabolism showed that DQ exposure activated all the metabolic pathways, whereas Bacillus administrations could reverse this trend. |
- DQ exposure→CauseOf→activated
|
394 |
35204173 |
7950 |
Specifically, SC06 dramatically reduced the genes involving in Lysine degradation, Tyrosine metabolism, Phenylalanine metabolism, Tryptophan metabolism and D-alanine metabolism (p < 0.01). |
- Lysine degradation→ThemeOf→reduced
- Tryptophan metabolism→ThemeOf→SC06
- Tyrosine metabolism→ThemeOf→Phenylalanine metabolism
- Phenylalanine metabolism→ThemeOf→Tyrosine metabolism
- Lysine degradation→ThemeOf→D-alanine metabolism
- Tryptophan metabolism→ThemeOf→Tyrosine metabolism
- D-alanine metabolism→ThemeOf→Lysine degradation
- Phenylalanine metabolism→ThemeOf→reduced
- Lysine degradation→ThemeOf→Phenylalanine metabolism
- Tryptophan metabolism→ThemeOf→reduced
- D-alanine metabolism→ThemeOf→SC06
- Phenylalanine metabolism→ThemeOf→D-alanine metabolism
- SC06→ThemeOf→Lysine degradation
- Tryptophan metabolism→ThemeOf→D-alanine metabolism
- D-alanine metabolism→ThemeOf→Tryptophan metabolism
- SC06→ThemeOf→Tryptophan metabolism
- Tryptophan metabolism→ThemeOf→Phenylalanine metabolism
- D-alanine metabolism→ThemeOf→Tyrosine metabolism
- SC06→ThemeOf→Tyrosine metabolism
- Tyrosine metabolism→ThemeOf→Lysine degradation
- D-alanine metabolism→ThemeOf→reduced
- SC06→CauseOf→reduced
- Tyrosine metabolism→ThemeOf→SC06
- D-alanine metabolism→ThemeOf→Phenylalanine metabolism
- Lysine degradation→ThemeOf→SC06
- SC06→ThemeOf→D-alanine metabolism
- Tyrosine metabolism→ThemeOf→Tryptophan metabolism
- Phenylalanine metabolism→ThemeOf→Lysine degradation
- Lysine degradation→ThemeOf→Tryptophan metabolism
- SC06→ThemeOf→Phenylalanine metabolism
- Tyrosine metabolism→ThemeOf→reduced
- Phenylalanine metabolism→ThemeOf→SC06
- Lysine degradation→ThemeOf→Tyrosine metabolism
- Tryptophan metabolism→ThemeOf→Lysine degradation
- Tyrosine metabolism→ThemeOf→D-alanine metabolism
- Phenylalanine metabolism→ThemeOf→Tryptophan metabolism
|
395 |
35204173 |
7953 |
As displayed in Figure 10, DQ significantly increased the KEGG pathways at the first level, i.e., cellular processes, human diseases, genetic information and environmental information, whereas Bacillus pretreatments, particularly SC06 could reverse this trend. |
- SC06→CauseOf→increased
|
396 |
35204173 |
7958 |
The current study revealed the antioxidant functions of two Bacillus species, B. amyloliquefaciens SC06 and B. licheniformis SC08 in preventing liver injuries. |
- liver injuries→ThemeOf→SC06
- liver injuries→ThemeOf→preventing
- liver injuries→ThemeOf→antioxidant
- antioxidant→ThemeOf→SC06
- antioxidant→ThemeOf→liver injuries
- antioxidant→ThemeOf→preventing
- SC06→ThemeOf→liver injuries
- SC06→CauseOf→preventing
- SC06→ThemeOf→antioxidant
|
397 |
35204173 |
7960 |
For instance, Bacillus spores protected against acetaminophen-induced acute liver injury in rats. |
- acute liver injury→ThemeOf→protected
- acute liver injury→ThemeOf→acetaminophen-induced
- acetaminophen-induced→ThemeOf→Bacillus
- acetaminophen-induced→ThemeOf→acute liver injury
- acetaminophen-induced→ThemeOf→protected
- Bacillus→ThemeOf→acute liver injury
- Bacillus→CauseOf→protected
- Bacillus→ThemeOf→acetaminophen-induced
- acute liver injury→ThemeOf→Bacillus
|
398 |
35204173 |
7964 |
Whether Bacillus SC06 or SC08 modulates the functions of stellate cells to alleviate oxidative stress warrants further investigation. |
- functions of stellate cells→ThemeOf→modulates
- functions of stellate cells→ThemeOf→alleviate oxidative stress
- SC08→ThemeOf→functions of stellate cells
- SC08→CauseOf→modulates
- SC08→ThemeOf→alleviate oxidative stress
- SC06→ThemeOf→functions of stellate cells
- alleviate oxidative stress→ThemeOf→SC06
- SC06→CauseOf→modulates
- alleviate oxidative stress→ThemeOf→functions of stellate cells
- SC06→ThemeOf→alleviate oxidative stress
- alleviate oxidative stress→ThemeOf→SC08
- functions of stellate cells→ThemeOf→SC06
- alleviate oxidative stress→ThemeOf→modulates
- functions of stellate cells→ThemeOf→SC08
|
399 |
35204173 |
7965 |
We also found that Bacillus SC06 showed stronger antioxidant capacity than SC08, as evidenced by the ameliorated hepatic injuries, decreased mitochondrial dysfunction and enhanced antioxidant levels under DQ exposure. |
- antioxidant→ThemeOf→enhanced
- antioxidant levels→ThemeOf→stronger
- SC06→ThemeOf→antioxidant levels
- decreased mitochondrial dysfunction→ThemeOf→stronger
- antioxidant→ThemeOf→antioxidant levels
- antioxidant levels→ThemeOf→decreased mitochondrial dysfunction
- SC06→ThemeOf→hepatic injuries
- antioxidant→ThemeOf→hepatic injuries
- hepatic injuries→ThemeOf→enhanced
- SC06→CauseOf→stronger
- antioxidant→ThemeOf→SC06
- hepatic injuries→ThemeOf→antioxidant
- SC06→ThemeOf→decreased mitochondrial dysfunction
- antioxidant→ThemeOf→stronger
- hepatic injuries→ThemeOf→antioxidant levels
- stronger→CauseOf→enhanced
- antioxidant→ThemeOf→decreased mitochondrial dysfunction
- hepatic injuries→ThemeOf→SC06
- decreased mitochondrial dysfunction→ThemeOf→enhanced
- antioxidant levels→ThemeOf→enhanced
- hepatic injuries→ThemeOf→stronger
- decreased mitochondrial dysfunction→ThemeOf→antioxidant
- antioxidant levels→ThemeOf→antioxidant
- hepatic injuries→ThemeOf→decreased mitochondrial dysfunction
- decreased mitochondrial dysfunction→ThemeOf→antioxidant levels
- antioxidant levels→ThemeOf→hepatic injuries
- SC06→CauseOf→enhanced
- decreased mitochondrial dysfunction→ThemeOf→hepatic injuries
- enhanced→CauseOf→stronger
- antioxidant levels→ThemeOf→SC06
- SC06→ThemeOf→antioxidant
- decreased mitochondrial dysfunction→ThemeOf→SC06
|
400 |
35204173 |
7969 |
On the contrary, another report revealed that SIRT4 modulation of fatty acid metabolism reduced the levels of free fatty acids but unfortunately increased ROS production in obese patients with NAFLD. |
- ROS production→ThemeOf→increased
- SIRT4→ThemeOf→obese
- obese→ThemeOf→increased
- levels of free fatty acids→ThemeOf→reduced
- ROS production→ThemeOf→SIRT4
- modulation→ThemeOf→levels of free fatty acids
- obese→ThemeOf→SIRT4
- levels of free fatty acids→ThemeOf→ROS production
- ROS production→ThemeOf→modulation
- modulation→CauseOf→reduced
- obese→ThemeOf→modulation
- levels of free fatty acids→ThemeOf→increased
- ROS production→ThemeOf→obese
- modulation→ThemeOf→ROS production
- levels of free fatty acids→ThemeOf→SIRT4
- increased→CauseOf→reduced
- modulation→CauseOf→increased
- levels of free fatty acids→ThemeOf→modulation
- SIRT4→ThemeOf→levels of free fatty acids
- modulation→ThemeOf→SIRT4
- levels of free fatty acids→ThemeOf→obese
- SIRT4→ThemeOf→reduced
- modulation→ThemeOf→obese
- reduced→CauseOf→increased
- SIRT4→ThemeOf→ROS production
- obese→ThemeOf→levels of free fatty acids
- ROS production→ThemeOf→levels of free fatty acids
- SIRT4→ThemeOf→increased
- obese→ThemeOf→reduced
- ROS production→ThemeOf→reduced
- SIRT4→ThemeOf→modulation
- obese→ThemeOf→ROS production
|
401 |
35204173 |
7970 |
In our study, Bacillus SC06 significantly decreased the mitochondrial dysfunction in DQ-exposed rats, but whether SIRT4 participated in this process was not investigated. |
- Bacillus→CauseOf→decreased
- Bacillus→ThemeOf→mitochondrial dysfunction
- mitochondrial dysfunction→ThemeOf→Bacillus
- mitochondrial dysfunction→ThemeOf→decreased
- mitochondrial dysfunction→ThemeOf→SC06
- SC06→CauseOf→decreased
- SC06→ThemeOf→mitochondrial dysfunction
|
402 |
35204173 |
7971 |
Nevertheless, another study in our lab showed that SC06 could activate SIRT1/FOXO3 signaling to alleviate oxidative stress in IPEC-J2 cells. |
- FOXO3→ThemeOf→SC06
- activate→CauseOf→alleviate
- FOXO3→ThemeOf→activate
- alleviate→CauseOf→activate
- FOXO3→ThemeOf→alleviate
- SC06→ThemeOf→FOXO3
- SC06→ThemeOf→SIRT1
- SC06→CauseOf→activate
- SC06→CauseOf→alleviate
- SIRT1→ThemeOf→SC06
- SIRT1→ThemeOf→activate
- SIRT1→ThemeOf→alleviate
|
403 |
35204173 |
7974 |
By using 16S rRNA sequencing analysis, we demonstrated that Bacillus SC06 protected the liver against oxidative stress by altering gut microbiota. |
- gut microbiota→ThemeOf→protected
- altering→CauseOf→protected
- SC06→ThemeOf→gut microbiota
- protected→CauseOf→altering
- Bacillus→ThemeOf→gut microbiota
- SC06→ThemeOf→liver against oxidative stress
- Bacillus→ThemeOf→liver against oxidative stress
- SC06→CauseOf→altering
- Bacillus→CauseOf→altering
- SC06→CauseOf→protected
- Bacillus→CauseOf→protected
- liver against oxidative stress→ThemeOf→Bacillus
- gut microbiota→ThemeOf→Bacillus
- liver against oxidative stress→ThemeOf→gut microbiota
- gut microbiota→ThemeOf→SC06
- liver against oxidative stress→ThemeOf→SC06
- gut microbiota→ThemeOf→liver against oxidative stress
- liver against oxidative stress→ThemeOf→altering
- gut microbiota→ThemeOf→altering
- liver against oxidative stress→ThemeOf→protected
|
404 |
35204173 |
7975 |
Evidence suggested that modulation of gut microbiota have the potential to control hepatic cellular stress and treat liver diseases of different etiologies. |
- hepatic cellular stress→ThemeOf→modulation
- modulation→ThemeOf→gut microbiota
- hepatic cellular stress→ThemeOf→treat
- modulation→CauseOf→control
- liver diseases→ThemeOf→hepatic cellular stress
- gut microbiota→ThemeOf→liver diseases
- modulation→CauseOf→treat
- liver diseases→ThemeOf→gut microbiota
- gut microbiota→ThemeOf→hepatic cellular stress
- treat→CauseOf→control
- liver diseases→ThemeOf→control
- gut microbiota→ThemeOf→control
- liver diseases→ThemeOf→modulation
- gut microbiota→ThemeOf→modulation
- liver diseases→ThemeOf→treat
- gut microbiota→ThemeOf→treat
- hepatic cellular stress→ThemeOf→liver diseases
- control→CauseOf→treat
- hepatic cellular stress→ThemeOf→gut microbiota
- modulation→ThemeOf→liver diseases
- hepatic cellular stress→ThemeOf→control
- modulation→ThemeOf→hepatic cellular stress
|
405 |
35204173 |
7986 |
Compared to the DQ group, SC06 pretreatment markedly upregulated the richness of g_Anaerofilum, s_Bacteroides uniformis and downregulated s_Oscillospira guilliermondii. |
- SC06→ThemeOf→richness
- richness→ThemeOf→upregulated
- SC06→CauseOf→upregulated
- richness→ThemeOf→downregulated
- SC06→CauseOf→downregulated
- upregulated→CauseOf→downregulated
- s_Oscillospira→ThemeOf→SC06
- downregulated→CauseOf→upregulated
- s_Bacteroides→ThemeOf→SC06
- s_Oscillospira→ThemeOf→richness
- s_Bacteroides→ThemeOf→richness
- s_Oscillospira→ThemeOf→upregulated
- s_Bacteroides→ThemeOf→upregulated
- s_Oscillospira→ThemeOf→downregulated
- s_Bacteroides→ThemeOf→downregulated
- richness→ThemeOf→s_Bacteroides
- SC06→ThemeOf→s_Bacteroides
- richness→ThemeOf→SC06
- SC06→ThemeOf→s_Oscillospira
- richness→ThemeOf→s_Oscillospira
|
406 |
35204173 |
7991 |
Therefore, our findings suggest that SC06 could optimize the composition of gut microbiota and restore the gut dysbiosis induced by DQ exposure. |
- composition of gut microbiota→ThemeOf→optimize
- composition of gut microbiota→ThemeOf→SC06
- restore→CauseOf→optimize
- optimize→CauseOf→restore
- SC06→ThemeOf→composition of gut microbiota
- SC06→CauseOf→restore
- SC06→CauseOf→optimize
- composition of gut microbiota→ThemeOf→restore
|
407 |
35204173 |
7992 |
Co-occurrence networks provide insight into microbial interactions, and we found that the average degree and graph density of microbial network in Bacillus groups were higher than those of the other groups, suggesting that Bacillus pretreatments increased microbe connections. |
- microbe→ThemeOf→higher
- higher→CauseOf→increased
- Bacillus→CauseOf→microbe
- Bacillus→CauseOf→increased
- Bacillus→CauseOf→graph density
- Bacillus→CauseOf→higher
- increased→CauseOf→higher
- microbe→CauseOf→Bacillus
- graph density→CauseOf→Bacillus
- microbe→ThemeOf→increased
|
408 |
35204173 |
7994 |
Results of Pearson's correlation showed that the beneficial microbes such as Lactobacillus, Faecalibacterium and Butyricicoccus exhibited a negative correlation with MDA, whereas g_Escherichia and g_Shigella were positively correlated with ALT and AST, which further confirmed that the alteration of microbiota composition was related to attenuating oxidative stress-induced liver injuries. |
- g_Escherichia→CauseOf→attenuating
- MDA→ThemeOf→liver injuries
- MDA→ThemeOf→attenuating
- MDA→ThemeOf→g_Escherichia
- liver injuries→ThemeOf→MDA
- liver injuries→ThemeOf→attenuating
- liver injuries→ThemeOf→g_Escherichia
- g_Escherichia→ThemeOf→MDA
- g_Escherichia→ThemeOf→liver injuries
|
409 |
35204173 |
7995 |
The functional KEGG annotation analyses of metagenomic study indicated that Bacillus administration, particularly SC06 could inhibit the microbial metabolic pathways including carbohydrate metabolism, lipid metabolism, amino acid metabolism and metabolism of cofactors and vitamins). |
- SC06→CauseOf→inhibit
|
410 |
35204173 |
7996 |
SC06 pretreatment markedly decreased the gene enrichment of carbohydrates such as galactose metabolism. |
- SC06→CauseOf→decreased
|
411 |
35204173 |
8000 |
Moreover, SC06 could decrease amino acid metabolism, particularly for phenylalanine and tryptophan. |
- amino acid metabolism→ThemeOf→decrease
- amino acid metabolism→ThemeOf→SC06
- SC06→CauseOf→decrease
- SC06→ThemeOf→amino acid metabolism
|
412 |
35204173 |
8006 |
Studies also found that tryptophan takes an important part in the biofilm formation of pathogens such as Salmonella Typhimurium; deletion of tryptophan genes led to the decreased bacterial attachment and biofilm defect. |
- biofilm defect→ThemeOf→decreased
- tryptophan→ThemeOf→bacterial attachment
- biofilm defect→ThemeOf→bacterial attachment
- tryptophan→ThemeOf→deletion
- biofilm defect→ThemeOf→tryptophan
- deletion→CauseOf→decreased
- biofilm defect→ThemeOf→deletion
- deletion→ThemeOf→biofilm defect
- bacterial attachment→ThemeOf→decreased
- deletion→ThemeOf→bacterial attachment
- bacterial attachment→ThemeOf→biofilm defect
- deletion→ThemeOf→tryptophan
- bacterial attachment→ThemeOf→tryptophan
- bacterial attachment→ThemeOf→deletion
- tryptophan→ThemeOf→decreased
- tryptophan→ThemeOf→biofilm defect
|
413 |
35204173 |
8010 |
For instance, Van De Lagemaat found that B Vitamins scavenge reactive oxygen species and modulate immune cytokines to reduce oxidative stress; supplementation with B vitamins enhanced the anti-oxidative state in patients with liver cancer. |
- supplementation→CauseOf→enhanced
|
414 |
35204173 |
8015 |
SC06 significantly decreased the gene enrichment involved in cellular processes such as bacterial chemotaxis, flagellar assembly and biofilm formation. |
- gene enrichment→ThemeOf→decreased
- gene enrichment→ThemeOf→SC06
- SC06→CauseOf→decreased
- SC06→ThemeOf→gene enrichment
|
415 |
35204173 |
8021 |
In our study, SC06 significantly downregulated the expression of the key genes involved in the pathways for bacterial chemotaxis, flagella assembly and biofilm formation, suggesting its potential ability to inhibit pathogen growth and colonization. |
- SC06→CauseOf→downregulated
- SC06→CauseOf→inhibit
- inhibit→CauseOf→downregulated
- downregulated→CauseOf→inhibit
|
416 |
35204173 |
8022 |
Results also revealed that SC06 pretreatment decreased the gene enrichment of bacterial secretion systems. |
- SC06→CauseOf→decreased
|
417 |
35204173 |
8024 |
These results confirmed SC06 administration downregulated the pathways associated with the pathogenicity of opportunistic pathogens, and exerted a protective role in alleviating oxidative stress- induced microbiota imbalance. |
- SC06→CauseOf→downregulated
|
418 |
35204173 |
8025 |
In conclusion, Bacillus SC06 alleviated oxidative stress-induced live injuries via modulating the composition, and pathways for metabolism and bacterial replication and secretion of gut microbiota. |
- oxidative stress-induced→ThemeOf→alleviated
- Bacillus→CauseOf→alleviated
- oxidative stress-induced→ThemeOf→modulating
- Bacillus→CauseOf→modulating
- SC06→ThemeOf→oxidative stress-induced
- SC06→ThemeOf→composition
- composition→ThemeOf→SC06
- composition→ThemeOf→Bacillus
- alleviated→CauseOf→modulating
- SC06→CauseOf→alleviated
- modulating→CauseOf→alleviated
- oxidative stress-induced→ThemeOf→SC06
- SC06→CauseOf→modulating
- composition→ThemeOf→alleviated
- oxidative stress-induced→ThemeOf→Bacillus
- Bacillus→ThemeOf→oxidative stress-induced
- composition→ThemeOf→modulating
- Bacillus→ThemeOf→composition
|
419 |
35265049 |
8044 |
The total organic carbon (%TOC) was dosed by organic matter oxidation using K2Cr2O7 according to. |
- organic matter oxidation→ThemeOf→K2Cr2O7
- K2Cr2O7→ThemeOf→total organic carbon
- K2Cr2O7→ThemeOf→organic matter oxidation
- total organic carbon→ThemeOf→organic matter oxidation
- total organic carbon→ThemeOf→K2Cr2O7
- organic matter oxidation→ThemeOf→total organic carbon
|
420 |
35265049 |
8072 |
In the initial mixture (Figure 3C), the fungal microbiome was dominated by four species (> 5%), namely, Dipodascus australiensis (33.18%), Penicillium roqueforti (27.27%), Pichia sp. |
- Penicillium→ThemeOf→Pichia
- Penicillium→ThemeOf→fungal microbiome
- fungal microbiome→ThemeOf→Dipodascus australiensis
- Dipodascus australiensis→ThemeOf→Pichia
- fungal microbiome→ThemeOf→Pichia
- Dipodascus australiensis→ThemeOf→Penicillium
- fungal microbiome→ThemeOf→Penicillium
- Dipodascus australiensis→ThemeOf→fungal microbiome
- Pichia→ThemeOf→Dipodascus australiensis
- Pichia→ThemeOf→Penicillium
- Pichia→ThemeOf→fungal microbiome
- Penicillium→ThemeOf→Dipodascus australiensis
|
421 |
35265049 |
8074 |
Similarly, the bacterial microbiome (Figure 3D) was dominated by Psychrobacter aquaticus (30.3%), Corynebacterium variabile (28.7%), Carnobacterium maltaromaticum (11.5%), and Psychrobacter pulmonis (9.7%). |
- Carnobacterium→ThemeOf→Psychrobacter pulmonis
- Carnobacterium→ThemeOf→bacterial
- Carnobacterium→ThemeOf→Psychrobacter aquaticus
- bacterial→ThemeOf→Corynebacterium variabile
- bacterial→ThemeOf→Psychrobacter pulmonis
- Corynebacterium variabile→ThemeOf→Carnobacterium
- bacterial→ThemeOf→Carnobacterium
- Corynebacterium variabile→ThemeOf→bacterial
- bacterial→ThemeOf→Psychrobacter aquaticus
- Psychrobacter pulmonis→ThemeOf→Carnobacterium
- Psychrobacter aquaticus→ThemeOf→Carnobacterium
- Psychrobacter pulmonis→ThemeOf→bacterial
- Psychrobacter aquaticus→ThemeOf→bacterial
- Carnobacterium→ThemeOf→Corynebacterium variabile
|
422 |
35265049 |
8075 |
By the end of thermophilic phase, major changes were observed in taxa abundancy (Figure 3C), as the compost was dominated by only two fungal and three bacterial species, namely, Candida freyschussii (87.3%), Sporopachydermia lactativora (10.6%), Pseudomonas syringae (47.8%), Actinobacter sp. |
- Pseudomonas syringae→ThemeOf→Sporopachydermia
- Actinobacter→ThemeOf→taxa
- Actinobacter→ThemeOf→Sporopachydermia
- taxa→ThemeOf→Pseudomonas syringae
- taxa→ThemeOf→Actinobacter
- taxa→ThemeOf→Sporopachydermia
- Sporopachydermia→ThemeOf→Pseudomonas syringae
- Sporopachydermia→ThemeOf→Actinobacter
- Sporopachydermia→ThemeOf→taxa
- Pseudomonas syringae→ThemeOf→taxa
|
423 |
35265049 |
8081 |
(7.1%), Brevibacterium linens (7%) and Arthrobacter protophormiae (5.3%), followed by Isoptericola sp. |
- Isoptericola→ThemeOf→Arthrobacter
- Brevibacterium→ThemeOf→Isoptericola
- Arthrobacter→ThemeOf→Isoptericola
- Isoptericola→ThemeOf→Brevibacterium
|
424 |
35295308 |
8137 |
Particularly large numbers of G2Is were found in the family Phormidiaceae, which includes Arthrospira platensis. |
- G2Is→CauseOf→found
|
425 |
35335231 |
8154 |
Comparative Genomic Analysis Reveals Intestinal Habitat Adaptation of Ligilactobacillus equi Rich in Prophage and Degrading Cellulase Ligilactobacillus equi is common in the horse intestine, alleviates the infection of Salmonella, and regulates intestinal flora. |
- regulates→CauseOf→alleviates
- infection→ThemeOf→Ligilactobacillus
- intestinal flora→ThemeOf→Salmonella
- Ligilactobacillus→ThemeOf→Salmonella
- infection→ThemeOf→alleviates
- intestinal flora→ThemeOf→regulates
- Ligilactobacillus→ThemeOf→regulates
- infection→ThemeOf→Degrading
- intestinal flora→ThemeOf→Ligilactobacillus
- Ligilactobacillus→ThemeOf→alleviates
- infection→ThemeOf→intestinal flora
- intestinal flora→ThemeOf→alleviates
- Salmonella→ThemeOf→regulates
- Ligilactobacillus→ThemeOf→infection
- Degrading→ThemeOf→Salmonella
- intestinal flora→ThemeOf→infection
- Salmonella→ThemeOf→Ligilactobacillus
- Ligilactobacillus→ThemeOf→Degrading
- Degrading→CauseOf→regulates
- intestinal flora→ThemeOf→Degrading
- Salmonella→ThemeOf→alleviates
- Ligilactobacillus→ThemeOf→intestinal flora
- Degrading→ThemeOf→Ligilactobacillus
- Salmonella→ThemeOf→infection
- alleviates→CauseOf→regulates
- Degrading→CauseOf→alleviates
- Salmonella→ThemeOf→Degrading
- infection→ThemeOf→Salmonella
- Degrading→ThemeOf→infection
- Salmonella→ThemeOf→intestinal flora
- infection→ThemeOf→regulates
- Degrading→ThemeOf→intestinal flora
|
426 |
35335231 |
8167 |
One study of strains from horse feces samples showed that all samples contained Ligilactobacillus hayakitensis, Limosilactobacillus equigenerosi, and L. equi. |
- Ligilactobacillus→CauseOf→contained
- Ligilactobacillus→ThemeOf→Limosilactobacillus equigenerosi
- Limosilactobacillus equigenerosi→ThemeOf→contained
- Limosilactobacillus equigenerosi→ThemeOf→Ligilactobacillus
|
427 |
35335231 |
8179 |
Among the four strains of L. equi, strain IMAU81196 had the smallest genome (1.95 Mbp) and the largest GC content (39.5%). |
- GC content→ThemeOf→smallest
- GC content→ThemeOf→IMAU81196
- IMAU81196→ThemeOf→GC content
- IMAU81196→CauseOf→smallest
|
428 |
35335231 |
8198 |
The ANI value of IMAU81196 and DPC 6820 was 98.44%, which was the highest of all strains, indicating that the base and nucleic acid match between IMAU81196 and DPC 6820 was higher. |
- IMAU81196→CauseOf→higher
- IMAU81196→ThemeOf→base
- base→ThemeOf→IMAU81196
- base→ThemeOf→higher
|
429 |
35335231 |
8199 |
The ANI value of strains JCM 10991T and DSM 15833T was 99.95%, indicating that there are differences between the homologous gene regions of these two strains. |
- DSM 15833T→ThemeOf→ANI
- JCM 10991T→ThemeOf→ANI
- ANI→ThemeOf→DSM 15833T
- ANI→ThemeOf→JCM 10991T
|
430 |
35335231 |
8205 |
From the perspective of the phylogenetic tree, the evolutionary divergence time between L. equi IMAU81196 and L. equi DPC 6820 is shorter, and the genetic relationship is closer. |
- evolutionary divergence→ThemeOf→shorter
- evolutionary divergence→ThemeOf→DPC 6820
- DPC 6820→ThemeOf→evolutionary divergence
- DPC 6820→CauseOf→shorter
|
431 |
35335231 |
8206 |
The results showed that a mean of 747 protein-coding genes was annotated in the four strains of L. equi, among which L. equi JCM 10991T had the most genes (828), and the remaining three strains had about 720 genes. |
- L. equi JCM 10991T→ThemeOf→L. equi
- L. equi→ThemeOf→L. equi JCM 10991T
|
432 |
35335231 |
8213 |
The fewest carbohydrate genes were found in L. equi DPC 6820 (85 genes representing 11.92% of all genes). |
- DPC 6820→CauseOf→fewest
|
433 |
35335231 |
8214 |
It can be seen from the figure that DSM 15833T has fewer genes than JCM 10991T in each gene category, and there are obvious differences in nucleosides, nucleotides, and membrane transport. |
- DSM 15833T→ThemeOf→membrane transport
- DSM 15833T→CauseOf→fewer
- nucleosides→ThemeOf→DSM 15833T
- nucleosides→ThemeOf→membrane transport
- nucleosides→ThemeOf→fewer
- membrane transport→ThemeOf→DSM 15833T
- membrane transport→ThemeOf→nucleosides
- membrane transport→ThemeOf→fewer
- DSM 15833T→ThemeOf→nucleosides
|
434 |
35335231 |
8227 |
IMAU81196 unique genes were mainly involved in the metabolism of carbohydrates. |
- metabolism of carbohydrates→ThemeOf→IMAU81196
- metabolism of carbohydrates→ThemeOf→involved
- IMAU81196→ThemeOf→metabolism of carbohydrates
- IMAU81196→CauseOf→involved
|
435 |
35335231 |
8249 |
This is a diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl-galactosamine, GDP-mannose, or CDP-abequose to a range of substrates, including cellulose, dolichol phosphate, and teichoic acids. |
- UDP-glucose→ThemeOf→dolichol phosphate
- sugar→ThemeOf→transferring
- sugar→ThemeOf→dolichol phosphate
- sugar→ThemeOf→UDP-glucose
- dolichol phosphate→ThemeOf→transferring
- dolichol phosphate→ThemeOf→sugar
- dolichol phosphate→ThemeOf→UDP-glucose
- UDP-glucose→CauseOf→transferring
- UDP-glucose→ThemeOf→sugar
|
436 |
35347213 |
8316 |
These ARGs were the following: aadA2, ant(6)-Ia, ant(9)-Ia, aph(3')-IIa, aph(3')-IIIa, dfrG, erm(44)v, lmrD, lsaE, poxtA, qnrD1, qnrS1, sul1, sul2, tet(K), vatE (Fig. |
- lmrD→ThemeOf→sul1
- aadA2→ThemeOf→sul2
- sul2→ThemeOf→lmrD
- qnrS1→ThemeOf→lmrD
- lmrD→ThemeOf→aadA2
- aph→CauseOf→qnrS1
- sul2→ThemeOf→aadA2
- qnrS1→ThemeOf→aadA2
- lmrD→CauseOf→aph
- aph→CauseOf→sul1
- sul2→CauseOf→aph
- qnrS1→CauseOf→aph
- lmrD→ThemeOf→qnrD1
- aph→CauseOf→lmrD
- sul2→CauseOf→aph
- qnrS1→CauseOf→aph
- lmrD→ThemeOf→sul2
- aph→CauseOf→qnrD1
- aph→CauseOf→qnrS1
- sul1→ThemeOf→lmrD
- lmrD→CauseOf→aph
- aph→CauseOf→sul2
- aph→CauseOf→sul1
- sul1→ThemeOf→aadA2
- aadA2→ThemeOf→qnrS1
- qnrD1→ThemeOf→lmrD
- aph→CauseOf→lmrD
- sul1→CauseOf→aph
- aadA2→ThemeOf→sul1
- qnrD1→ThemeOf→aadA2
- aph→CauseOf→qnrD1
- sul1→CauseOf→aph
- aadA2→ThemeOf→lmrD
- qnrD1→CauseOf→aph
- aph→CauseOf→sul2
- lmrD→ThemeOf→qnrS1
- aadA2→ThemeOf→qnrD1
- qnrD1→CauseOf→aph
|
437 |
35347213 |
8406 |
The presence of several ARGs presumably associated with iMGEs in the feed of dairy cows harbors the potential to affect the resident microbiota of the animals. |
- associated→CauseOf→affect
- ARGs→CauseOf→associated
- ARGs→CauseOf→affect
- affect→CauseOf→associated
|
438 |
35347213 |
8409 |
Furthermore, ARGs can possibly spread further, to lower gastrointestinal (GI) regions. |
- lower gastrointestinal→ThemeOf→ARGs
- ARGs→ThemeOf→lower gastrointestinal
|
439 |
35564054 |
8445 |
In conclusion, a ddPCR can be a reliable method for detecting and quantifying lactic acid bacteria in food. |
- lactic→ThemeOf→ddPCR
- ddPCR→ThemeOf→lactic
|
440 |
35564054 |
8455 |
argentoratensis affected the fermentation stage of vegetables, such as kimchi. |
- argentoratensis→CauseOf→affected
|
441 |
35637757 |
8565 |
DS1 as the evaluation index, the primary and secondary order of the four factors affecting the degradation rate is concentration > material size > temperature > time, and the optimal extraction condition is A3B3C3D2. |
- degradation→ThemeOf→A3B3C3D2
- A3B3C3D2→ThemeOf→degradation
|
442 |
35637757 |
8575 |
When the concentration of hydrochloric acid increases, although hydroxyl-beta-sanshool is more stable than hydroxyl-alpha-sanshool, due to its highly unsaturated nature, it also eventually isomerizes. |
- hydroxyl-beta-sanshool→ThemeOf→isomerizes
- isomerizes→ThemeOf→hydroxyl-beta-sanshool
|
443 |
35637757 |
8614 |
3(f)) is as follows: First, hydroxyl-alpha-sanshool was converted to hydroxyl-beta-sanshool, and then the carbonyl bond of hydroxyl-beta-sanshool was broken, which leads to isomerization and isomer formation under the action of hydrochloric acid: (1Z,2E,4E,8E,10E)-n-(2-hydroxy-2-methylpropyl)dodeca-2,4,8,10-tetraenimidic acid. |
- 1Z,2E,4E,8E,10E→ThemeOf→isomer formation
- 1Z,2E,4E,8E,10E→CauseOf→leads to
- isomerization→ThemeOf→1Z,2E,4E,8E,10E
- isomerization→ThemeOf→leads to
- isomer formation→ThemeOf→1Z,2E,4E,8E,10E
- isomer formation→ThemeOf→leads to
- 1Z,2E,4E,8E,10E→ThemeOf→isomerization
|
444 |
35677055 |
8641 |
SLE is distinguished by the presence of high-titer serological autoantibodies, such as antibodies that bind to double-stranded DNA (dsDNA), SmRNP, SSA/Ro, and SSB/La. |
- SmRNP→ThemeOf→SSB/La
- SmRNP→ThemeOf→SLE
- SSB/La→ThemeOf→SSA/Ro
- SSB/La→ThemeOf→SLE
- SSB/La→ThemeOf→SmRNP
- SSA/Ro→ThemeOf→SSB/La
- SSA/Ro→ThemeOf→SLE
- SLE→ThemeOf→SSB/La
- SLE→ThemeOf→SSA/Ro
- SLE→ThemeOf→SmRNP
|
445 |
35677055 |
8660 |
For example, L. delbrueckii and L. rhamnosus have been shown to be effective in the elevation of Tregs and the decrease of inflammatory cytokines and disease severity in SLE-induced mice. |
- L. delbrueckii→CauseOf→elevation
- decrease→CauseOf→elevation
- L. rhamnosus→CauseOf→decrease
- elevation→CauseOf→decrease
- L. delbrueckii→CauseOf→decrease
- L. rhamnosus→CauseOf→elevation
|
446 |
35677055 |
8708 |
Moreover, L. delbrueckii and L. rhamnosus could decrease expression of CXCR3, CCR5, CCR4, and CCR3 on the tolerogenic phenotype of DCs in SLE patients. |
- CCR5→ThemeOf→expression
- expression→ThemeOf→L. delbrueckii
- CCR3→ThemeOf→expression
- CCR5→ThemeOf→L. delbrueckii
- expression→ThemeOf→CCR3
- CCR3→ThemeOf→L. delbrueckii
- SLE→ThemeOf→CCR5
- CCR4→ThemeOf→SLE
- CCR4→ThemeOf→decrease
- L. delbrueckii→ThemeOf→CCR5
- SLE→ThemeOf→CCR4
- CCR4→ThemeOf→expression
- L. delbrueckii→CauseOf→decrease
- CCR4→ThemeOf→L. delbrueckii
- L. delbrueckii→ThemeOf→CCR4
- L. delbrueckii→ThemeOf→expression
- SLE→ThemeOf→CCR3
- expression→ThemeOf→CCR5
- L. delbrueckii→ThemeOf→CCR3
- CCR5→ThemeOf→SLE
- CCR3→ThemeOf→SLE
- CCR5→ThemeOf→decrease
- expression→ThemeOf→CCR4
- CCR3→ThemeOf→decrease
|
447 |
35677055 |
8709 |
Another study showed that Lactobacillus plantarum NCU116 increased the expression levels of Th17, Treg and specific transcription factors RORgammat and Foxp3 in CTX-induced immunosuppression mice. |
- NCU116→ThemeOf→RORgammat
- Th17→ThemeOf→increased
- NCU116→ThemeOf→Th17
- Foxp3→ThemeOf→expression levels
- expression levels→ThemeOf→increased
- Foxp3→ThemeOf→NCU116
- expression levels→ThemeOf→Foxp3
- Foxp3→ThemeOf→increased
- expression levels→ThemeOf→RORgammat
- RORgammat→ThemeOf→expression levels
- expression levels→ThemeOf→Th17
- RORgammat→ThemeOf→NCU116
- RORgammat→ThemeOf→increased
- NCU116→CauseOf→increased
- Th17→ThemeOf→expression levels
- NCU116→ThemeOf→Foxp3
- Th17→ThemeOf→NCU116
|
448 |
35677055 |
8716 |
In addition, a randomized trial demonstrated that LGG has an immediate effect in the human gut with upregulating genes related to B cell activation. |
- gut→ThemeOf→B cell activation
- gut→ThemeOf→LGG
- gut→ThemeOf→upregulating
- B cell activation→ThemeOf→gut
- B cell activation→ThemeOf→LGG
- B cell activation→ThemeOf→upregulating
- LGG→ThemeOf→gut
- LGG→ThemeOf→B cell activation
- LGG→CauseOf→upregulating
|
449 |
35677055 |
8717 |
After administration of Lactobacillus paracasei MCC1849, IgA secretion was elevated and Follicular helper T (Tfh) cells was induced in the BALB/c mice. |
- induced→CauseOf→elevated
- elevated→CauseOf→induced
- MCC1849→CauseOf→induced
- MCC1849→CauseOf→elevated
|
450 |
35677055 |
8721 |
Dysregulation of Tregs and Th1/Th2/Th17 are involved in the pathogenesis of SLE. |
- Dysregulation→ThemeOf→Tregs
- Dysregulation→CauseOf→involved
- Tregs→ThemeOf→Dysregulation
- Tregs→ThemeOf→involved
|
451 |
35677055 |
8763 |
To our best knowledge, although there were no adverse effects on the RCT trials of Lactobacillus on inflammatory bowel disease and rheumatoid arthritis, the adverse effects of Lactobacillus as probiotics must be further investigated utilizing additional antibiotic regimens, probiotic strain combinations, and human microbiome transplants into germ-free mice. |
- inflammatory bowel disease→ThemeOf→Lactobacillus
- Lactobacillus→ThemeOf→rheumatoid arthritis
- Lactobacillus→ThemeOf→inflammatory bowel disease
- rheumatoid arthritis→ThemeOf→inflammatory bowel disease
- rheumatoid arthritis→ThemeOf→Lactobacillus
- inflammatory bowel disease→ThemeOf→rheumatoid arthritis
|
452 |
35693762 |
8794 |
In humans, Vgamma9Vdelta2 T cells are predominant circulating gammadelta T cells, whereas Vdelta1+ cells and fetal gammadelta T cells are commonly tissue-resident cells. |
- gammadelta T→ThemeOf→Vgamma9Vdelta2
- Vgamma9Vdelta2→ThemeOf→gammadelta T
|
453 |
35693762 |
8795 |
In addition to their ability to release cytokines, subsets of gammadelta cells possess NK-like cytotoxicity via NK receptors, such as NKG2D. |
- cytotoxicity→ThemeOf→gammadelta
- NK-like→ThemeOf→NKG2D
- NK-like→ThemeOf→gammadelta
- gammadelta→ThemeOf→NKG2D
- gammadelta→ThemeOf→cytotoxicity
- NKG2D→ThemeOf→NK-like
- gammadelta→ThemeOf→NK-like
- NKG2D→ThemeOf→gammadelta
|
454 |
35693762 |
8801 |
DN T cells are subdivided into four differentiation stages (DN1: CD44+CD25-; DN2: CD44+CD25+; DN3: CD44-CD25+; DN4: CD44-CD25-) (Figure 1B). |
- CD44+CD25-→ThemeOf→DN1
- DN4→ThemeOf→CD44+CD25-
- DN1→ThemeOf→CD44+CD25-
- CD44+CD25-→ThemeOf→DN4
|
455 |
35693762 |
8803 |
Then, DP T cells interact with cortical epithelial cells expressing MHC molecules with self-antigens, which leads to a selection process where too weak signaling induces DP cell apoptosis. |
- weak→CauseOf→induces
- induces→CauseOf→weak
- too→CauseOf→weak
- too→CauseOf→induces
|
456 |
35693762 |
8818 |
Although fetal Vgamma9Vdelta2 T cells slowly turn over and have self-renewal capacity, adult-derived Vgamma9Vdelta2 T cells can also be generated and be a major source human gammadelta T cells in the blood. |
- Vgamma9Vdelta2→CauseOf→self-renewal capacity
- self-renewal capacity→CauseOf→Vgamma9Vdelta2
|
457 |
35693762 |
8821 |
CD27+CD44int cells actively secrete IFN-gamma, whereas CD27-CD44hi cells produce IL-17A. |
- CD27+CD44int→ThemeOf→secrete IFN-gamma
- secrete IFN-gamma→ThemeOf→CD27+CD44int
|
458 |
35693762 |
8822 |
If gammadeltaTCR is weak, cells tend to preferentially differentiate into alphabeta T cells. |
- gammadeltaTCR→CauseOf→weak
- alphabeta T→ThemeOf→gammadeltaTCR
- alphabeta T→ThemeOf→weak
- gammadeltaTCR→ThemeOf→alphabeta T
|
459 |
35693762 |
8844 |
T10/22, a MHC class Ib molecule, is also important for gammadelta T cell development. |
- T10/22→ThemeOf→gammadelta T cell development
- T10/22→CauseOf→important
- gammadelta T cell development→ThemeOf→T10/22
- gammadelta T cell development→ThemeOf→important
|
460 |
35693762 |
8846 |
Phosphoantigens induce a conformational change in BTN3A1-BTN2A1 dimers, which binds to Vgamma9Vdelta2 TCR. |
- TCR→ThemeOf→induce
- conformational→ThemeOf→Vgamma9Vdelta2
- induce→CauseOf→binds
- TCR→ThemeOf→binds
- conformational→ThemeOf→induce
- binds→CauseOf→induce
- TCR→ThemeOf→BTN3A1
- conformational→ThemeOf→binds
- BTN3A1→ThemeOf→TCR
- BTN2A1→ThemeOf→TCR
- conformational→ThemeOf→BTN3A1
- BTN3A1→ThemeOf→conformational
- BTN2A1→ThemeOf→conformational
- Vgamma9Vdelta2→ThemeOf→TCR
- BTN3A1→ThemeOf→Vgamma9Vdelta2
- BTN2A1→ThemeOf→Vgamma9Vdelta2
- Vgamma9Vdelta2→ThemeOf→BTN2A1
- BTN3A1→ThemeOf→induce
- BTN2A1→ThemeOf→induce
- Vgamma9Vdelta2→ThemeOf→conformational
- BTN3A1→ThemeOf→binds
- TCR→ThemeOf→BTN2A1
- BTN2A1→ThemeOf→binds
- Vgamma9Vdelta2→CauseOf→induce
- TCR→ThemeOf→conformational
- conformational→ThemeOf→TCR
- Vgamma9Vdelta2→CauseOf→binds
- TCR→ThemeOf→Vgamma9Vdelta2
- conformational→ThemeOf→BTN2A1
- Vgamma9Vdelta2→ThemeOf→BTN3A1
|
461 |
35693762 |
8848 |
Contrary to a number of reports that argued fetal thymus-derived gammadelta T cells are invariant, adult-derived gammadelta T cells have relatively variant TCR chains. |
- TCR chains→ThemeOf→gammadelta
- gammadelta→ThemeOf→variant
- gammadelta→ThemeOf→TCR chains
- variant→CauseOf→TCR chains
- variant→ThemeOf→gammadelta
- TCR chains→CauseOf→variant
|
462 |
35693762 |
8850 |
In some cases, gammadelta T cells can be activated without TCR signaling, but activated by stress-induced molecules, such as MHC class I chain-related protein A/B (MICA/B) or retinoic acid early inducible 1 (Rae-1), via NKG2D receptor. |
- NKG2D receptor→ThemeOf→activated
- MHC→ThemeOf→Rae-1
- NKG2D receptor→ThemeOf→MHC
- MHC→CauseOf→activated
- NKG2D receptor→ThemeOf→activated
- activated→CauseOf→activated
- gammadelta T cells→ThemeOf→activated
- Rae-1→ThemeOf→gammadelta T cells
- gammadelta T cells→ThemeOf→NKG2D receptor
- Rae-1→ThemeOf→activated
- gammadelta T cells→ThemeOf→Rae-1
- Rae-1→ThemeOf→MHC
- gammadelta T cells→ThemeOf→MHC
- Rae-1→ThemeOf→activated
- gammadelta T cells→ThemeOf→activated
- MHC→ThemeOf→gammadelta T cells
- activated→CauseOf→activated
- MHC→CauseOf→activated
- NKG2D receptor→ThemeOf→gammadelta T cells
- MHC→ThemeOf→NKG2D receptor
|
463 |
35693762 |
8875 |
However, because these phenotypes were not repeated under microglia- or astrocyte-specific deletion of IL-17R, direct evidence linking IL-17A and memory formation is still lacking and should be further addressed. |
- deletion→ThemeOf→IL-17R
- deletion→ThemeOf→memory formation
- IL-17R→ThemeOf→deletion
- IL-17R→ThemeOf→memory formation
- memory formation→ThemeOf→deletion
- memory formation→ThemeOf→IL-17R
|
464 |
35693762 |
8879 |
Given the authors showed conditional deletion of Rorc using CD4-Cre mice, they concluded CD4 T cells are responsible for IL-17A production. |
- deletion→ThemeOf→Rorc
- IL-17A production→ThemeOf→deletion
- IL-17A production→ThemeOf→Rorc
- Rorc→ThemeOf→deletion
- Rorc→ThemeOf→IL-17A production
- deletion→ThemeOf→IL-17A production
|
465 |
35693762 |
8893 |
On the other hand, Vdelta2+ T cells have strong cytotoxicity against oligodendrocytes. |
- cytotoxicity→ThemeOf→Vdelta2+ T cells
- Vdelta2+ T cells→ThemeOf→cytotoxicity
|
466 |
35693762 |
8897 |
Another study showed that gut L. acidipiscis reduces Vgamma4+ cells while Vgamma1+ cells were increased. |
- Vgamma1+ cells→ThemeOf→increased
- increased→CauseOf→reduces
- L. acidipiscis→CauseOf→increased
- reduces→CauseOf→increased
- L. acidipiscis→CauseOf→reduces
- Vgamma4+ cells→ThemeOf→increased
|
467 |
35693762 |
8906 |
While CD4 T cells induce tumor necrosis factor (TNF) production by macrophages via IFN-gamma, gammadelta T cells promote neutrophil infiltration through IL-17A (Figure 2C). |
- CD4→ThemeOf→tumor necrosis factor
- tumor necrosis factor→ThemeOf→induce
- CD4→CauseOf→induce
- induce→CauseOf→promote
- TNF→ThemeOf→promote
- TNF→ThemeOf→CD4
- TNF→ThemeOf→induce
- promote→CauseOf→induce
- CD4→ThemeOf→TNF
- tumor necrosis factor→ThemeOf→promote
- CD4→CauseOf→promote
- tumor necrosis factor→ThemeOf→CD4
|
468 |
35693762 |
8941 |
IL-6 knock out mice have more CD8 T cells and less CD4 T cells and gammadelta T cells compared to WT mice. |
- knock out→ThemeOf→IL-6
- CD4→ThemeOf→gammadelta
- CD8→ThemeOf→knock out
- knock out→ThemeOf→CD4
- CD4→ThemeOf→CD8
- CD8→ThemeOf→CD4
- knock out→CauseOf→less
- less→CauseOf→more
- CD8→ThemeOf→less
- knock out→CauseOf→more
- more→CauseOf→less
- CD8→ThemeOf→more
- knock out→ThemeOf→gammadelta
- gammadelta→ThemeOf→IL-6
- CD8→ThemeOf→gammadelta
- IL-6→ThemeOf→knock out
- knock out→ThemeOf→CD8
- gammadelta→ThemeOf→knock out
- IL-6→ThemeOf→CD4
- CD4→ThemeOf→IL-6
- gammadelta→ThemeOf→CD4
- IL-6→ThemeOf→less
- CD4→ThemeOf→knock out
- gammadelta→ThemeOf→less
- IL-6→ThemeOf→more
- CD4→ThemeOf→less
- gammadelta→ThemeOf→more
- IL-6→ThemeOf→gammadelta
- CD4→ThemeOf→more
- gammadelta→ThemeOf→CD8
|
469 |
35693762 |
8967 |
A study showed gammadelta T cell were mostly correlated to better prognosis among multiple tumor-infiltrating immune cells. |
- tumor→ThemeOf→gammadelta
- tumor→ThemeOf→correlated
- gammadelta→ThemeOf→tumor
- gammadelta→CauseOf→correlated
|
470 |
35693762 |
8971 |
Also, our group showed gammadelta T cells are associated with longer survival of brain tumor patients. |
- gammadelta T cells→CauseOf→longer
- brain tumor→ThemeOf→gammadelta T cells
- brain tumor→ThemeOf→longer
- gammadelta T cells→ThemeOf→brain tumor
|
471 |
35693762 |
8979 |
In this study, anti-gammadeltaTCR antibody administration also abrogated gammadelta T cell-mediated antitumor functions. |
- anti-gammadeltaTCR→CauseOf→anti-gammadeltaTCR antibody
- tumor→ThemeOf→gammadelta T
- anti-gammadeltaTCR→ThemeOf→tumor
- tumor→ThemeOf→anti-gammadeltaTCR antibody
- anti-gammadeltaTCR→CauseOf→abrogated
- gammadelta T→ThemeOf→anti-gammadeltaTCR
- gammadelta T→ThemeOf→tumor
- gammadelta T→ThemeOf→abrogated
- anti-gammadeltaTCR antibody→ThemeOf→anti-gammadeltaTCR
- anti-gammadeltaTCR antibody→ThemeOf→tumor
- anti-gammadeltaTCR antibody→ThemeOf→abrogated
- anti-gammadeltaTCR→ThemeOf→gammadelta T
- tumor→ThemeOf→anti-gammadeltaTCR
|
472 |
35693762 |
8989 |
Vgamma9Vdelta2 T cells were also able to target glioma stem cells (GSCs). |
- Vgamma9Vdelta2→CauseOf→target
|
473 |
35693762 |
8998 |
Because the beneficial effect of gammadelta T cells in low-grade glioma (LGG) was clearer than HGG, gammadelta T cells may also have antitumor effects against other brain tumors, such as meningioma. |
- gammadelta T cells→CauseOf→beneficial
- gammadelta T cells→CauseOf→beneficial
|
474 |
35730767 |
10209 |
BACKGROUND: The soy isoflavone microbial metabolites dihydrodaidzein (DHD), dihydrogenistein (DHG), equol and 5-hydroxy-equol, are generally more biologically active than their precursors, daidzein and genistein. |
- dihydrodaidzein→CauseOf→more
|
475 |
35730767 |
10215 |
Moreover, the DPPH free radical-scavenging capacity of soymilk fermented with HAU-FR7 was significantly higher than that of unfermented soymilk. |
- HAU-FR7→ThemeOf→DPPH free radical-scavenging capacity
- HAU-FR7→CauseOf→higher
- DPPH free radical-scavenging capacity→ThemeOf→HAU-FR7
- DPPH free radical-scavenging capacity→ThemeOf→higher
|
476 |
35812872 |
9031 |
Then the birds were all euthanized and evaluated using the WB myopathy scoring system based on the area of palpable firmness, reported by Sihvo et al.. For short, we manually palpated and classified 300 chicken filets into three kinds of breast filets based on the texture and firmness: normal breast (NORM), mild wooden breast (MILD), and severe wooden breast (SEV). |
- mild wooden breast→ThemeOf→firmness
- firmness→ThemeOf→MILD
- mild wooden breast→ThemeOf→firmness
- firmness→ThemeOf→WB myopathy
- mild wooden breast→ThemeOf→MILD
- MILD→ThemeOf→mild wooden breast
- mild wooden breast→ThemeOf→WB myopathy
- MILD→ThemeOf→firmness
- firmness→ThemeOf→mild wooden breast
- MILD→ThemeOf→firmness
- firmness→ThemeOf→firmness
- MILD→ThemeOf→WB myopathy
- firmness→ThemeOf→MILD
- WB myopathy→ThemeOf→mild wooden breast
- firmness→ThemeOf→WB myopathy
- WB myopathy→ThemeOf→firmness
- firmness→ThemeOf→mild wooden breast
- WB myopathy→ThemeOf→firmness
- firmness→ThemeOf→firmness
- WB myopathy→ThemeOf→MILD
|
477 |
35812872 |
9052 |
By contrast, the mean myofiber area and average myofiber width in SEV filets were lower than those in the NORM and MILD filets (P < 0.001). |
- average myofiber width→ThemeOf→SEV
- SEV→CauseOf→lower
- SEV→ThemeOf→average myofiber width
- SEV→ThemeOf→MILD
- MILD→ThemeOf→lower
- MILD→ThemeOf→SEV
|
478 |
35812872 |
9059 |
In addition, the abundance of Verrucomicrobia also decreased in birds with mild WB (P < 0.05, Figure 3D, right). |
- mild WB→CauseOf→decreased
|
479 |
35812872 |
9080 |
Hence, fragmented myofibers in severe WB was responsible for a bad water-holding capacity and other alternation in meat quality. |
- fragmented→CauseOf→bad
|
480 |
35812872 |
9092 |
Arginine was also reported to stimulate muscle protein synthesis by inducing the phosphorylation of mTOR in skeletal muscles. |
- mTOR→ThemeOf→stimulate
- Arginine→CauseOf→stimulate
- phosphorylation→ThemeOf→inducing
- mTOR→ThemeOf→muscle protein
- Arginine→ThemeOf→mTOR
- mTOR→ThemeOf→Arginine
- Arginine→ThemeOf→muscle protein
- mTOR→ThemeOf→inducing
- Arginine→CauseOf→inducing
- mTOR→ThemeOf→phosphorylation
- Arginine→ThemeOf→phosphorylation
- muscle protein→ThemeOf→stimulate
- inducing→CauseOf→stimulate
- muscle protein→ThemeOf→mTOR
- phosphorylation→ThemeOf→stimulate
- muscle protein→ThemeOf→Arginine
- phosphorylation→ThemeOf→mTOR
- muscle protein→ThemeOf→inducing
- phosphorylation→ThemeOf→muscle protein
- stimulate→CauseOf→inducing
- muscle protein→ThemeOf→phosphorylation
- phosphorylation→ThemeOf→Arginine
|
481 |
35812872 |
9096 |
The glutamine association with thyroid hormones regulates muscle weight and fiber diameter in resting and atrophic conditions and results in protection from muscle loss during atrophy. |
- atrophic conditions→ThemeOf→fiber diameter
- atrophy→ThemeOf→atrophic conditions
- fiber diameter→ThemeOf→regulates
- glutamine→ThemeOf→atrophic conditions
- atrophic conditions→ThemeOf→protection
- atrophy→ThemeOf→muscle
- protection→ThemeOf→glutamine
- glutamine→ThemeOf→muscle
- atrophic conditions→ThemeOf→regulates
- atrophy→ThemeOf→fiber diameter
- protection→ThemeOf→atrophic conditions
- glutamine→ThemeOf→atrophy
- muscle→ThemeOf→glutamine
- atrophy→ThemeOf→protection
- protection→ThemeOf→muscle
- glutamine→ThemeOf→fiber diameter
- muscle→ThemeOf→atrophic conditions
- atrophy→ThemeOf→regulates
- protection→ThemeOf→atrophy
- glutamine→ThemeOf→protection
- muscle→ThemeOf→atrophy
- fiber diameter→ThemeOf→glutamine
- protection→ThemeOf→fiber diameter
- glutamine→CauseOf→regulates
- muscle→ThemeOf→fiber diameter
- fiber diameter→ThemeOf→atrophic conditions
- protection→ThemeOf→regulates
- atrophic conditions→ThemeOf→glutamine
- muscle→ThemeOf→protection
- fiber diameter→ThemeOf→muscle
- atrophic conditions→ThemeOf→muscle
- muscle→ThemeOf→regulates
- fiber diameter→ThemeOf→atrophy
- atrophic conditions→ThemeOf→atrophy
- atrophy→ThemeOf→glutamine
- fiber diameter→ThemeOf→protection
|
482 |
35812872 |
9111 |
Choline, an essential nutrient for skeletal muscle, is a precursor of Ach, and ion replacement of K+ with choline+ results in potent inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase in the sarcoplasmic/endoplasmic reticulum of skeletal muscles. |
- replacement→ThemeOf→Ca2+
- replacement→CauseOf→inhibition
- replacement→ThemeOf→sarcoplasmic/endoplasmic reticulum
- sarcoplasmic/endoplasmic reticulum→ThemeOf→Ca2+
- sarcoplasmic/endoplasmic reticulum→ThemeOf→replacement
- sarcoplasmic/endoplasmic reticulum→ThemeOf→inhibition
- Ca2+→ThemeOf→replacement
- Ca2+→ThemeOf→inhibition
- Ca2+→ThemeOf→sarcoplasmic/endoplasmic reticulum
|
483 |
36230139 |
9267 |
Some Lactobacilli have been reported as strains with high probiotic potential and support efforts to improve probiotic quality, such as L. salivarius strains BCRC14759 and BCRC 12574, with the highest exopolysaccharide production, L. johnsonii ZLJ010, with better adaptation to the gut environment and its probiotic functionalities, and L. helveticus D75 and D76 that can inhibit the growth of pathogens and pathobionts. |
- L. helveticus D75→CauseOf→inhibit
- BCRC14759→CauseOf→inhibit
- D75→CauseOf→inhibit
|
484 |
36230139 |
9317 |
Mutation breeding of Lactobacilli strains can change the genetic structure and function of Lactobacilli strains, and then screen mutants to obtain the required high-yield and high-quality strains. |
- Mutation→CauseOf→change
- Mutation→ThemeOf→genetic structure
- Mutation→ThemeOf→function
- genetic structure→ThemeOf→change
- genetic structure→ThemeOf→Mutation
- genetic structure→ThemeOf→function
- function→ThemeOf→change
- function→ThemeOf→Mutation
- function→ThemeOf→genetic structure
|
485 |
36557680 |
9621 |
With respect to the genome size, Weissella has a smaller pool of genes compared to other fecal commensal bacteria belonging to the genera Parabacteroides, Bacteroides, Lactobacillus, and Pediococcus. |
- Weissella→CauseOf→smaller
- Weissella→ThemeOf→pool
- pool→ThemeOf→Weissella
- pool→ThemeOf→smaller
|
486 |
36557680 |
9665 |
In addition, Weissella seems to play an important role in the reduction of a depression-like state and in the strengthening of the gut epithelial barrier. |
- strengthening→CauseOf→reduction
- Weissella→CauseOf→reduction
- Weissella→CauseOf→strengthening
- reduction→CauseOf→strengthening
|
487 |
36557680 |
9666 |
Among Weissella species, W. confusa is one of the most important EPS producers, and different W. confusa strains, such as W. confusa VP30, XG-3, and KR780676, produce several EPSs with distinct functions. |
- KR780676→CauseOf→produce
- KR780676→ThemeOf→EPS
- W. confusa→ThemeOf→EPS
- W. confusa→CauseOf→produce
- W. confusa→ThemeOf→EPS
- EPS→ThemeOf→KR780676
- EPS→ThemeOf→EPS
- EPS→ThemeOf→produce
- EPS→ThemeOf→KR780676
- EPS→ThemeOf→W. confusa
- EPS→ThemeOf→produce
- EPS→ThemeOf→EPS
- EPS→ThemeOf→W. confusa
- KR780676→ThemeOf→EPS
|
488 |
36557680 |
9687 |
The thermostable 'weissellicin D' exhibited a broad range of antibacterial activity against many food-borne pathogens, such as E. coli, S. aureus, and L. monocytogenes. |
- antibacterial→ThemeOf→'weissellicin D
- 'weissellicin D→ThemeOf→antibacterial
|
489 |
36557680 |
9697 |
Both weissellicin Y and weissellicin M possess broad antimicrobial spectra specifically targeted against B. coagulans. |
- weissellicin Y→ThemeOf→antimicrobial
- weissellicin M→ThemeOf→antimicrobial
- antimicrobial→ThemeOf→weissellicin Y
- antimicrobial→ThemeOf→weissellicin M
|
490 |
36557680 |
9698 |
Between the two, weissellicin M showed comparatively higher antibacterial activity, as well as greater acid and thermal stability when compared to weissellicin Y. |
- weissellicin M→CauseOf→higher
- weissellicin M→ThemeOf→antibacterial activity
- antibacterial activity→ThemeOf→higher
- antibacterial activity→ThemeOf→weissellicin M
|
491 |
36557680 |
9713 |
examined the antibacterial activity of W. confusa DD_A7 isolated from kimchi and found that the DD-A7 strains trigger the oxidative stress to inhibit the growth of extended-spectrum beta-lactamase (ESBL)-positive E. coli, which are emerging pathogens. |
- DD-A7→CauseOf→inhibit
- DD-A7→CauseOf→trigger
- inhibit→CauseOf→trigger
- trigger→CauseOf→inhibit
|
492 |
36557680 |
9733 |
For example, W. paramesenteroides WpK4 was able to reduce the disease activity index (DAI) as well as repair some of the mucosal damage in mice models with DSS-induced colitis. |
- WpK4→CauseOf→reduce
- reduce→CauseOf→repair
- W. paramesenteroides WpK4→CauseOf→repair
- W. paramesenteroides WpK4→CauseOf→reduce
- repair→CauseOf→reduce
- WpK4→CauseOf→repair
|
493 |
36677358 |
9885 |
Based on the VIP scores of PLS-DA (Figure 7B), zOTU_3 (Kluyveromyces marxianus) was highly associated with Kopanisti A, and zOTU_2 (Torulaspora delbrueckii) and zOTU_12 (Mucor circinelloides) with Kopanisti D, as also revealed by the compositional analysis at the genus level (Figure 6A). |
- zOTU_2→CauseOf→associated
- zOTU_3→CauseOf→associated
|
494 |
36677358 |
9892 |
Among the other three types, although not in a statistically significant mode, Kopanisti A received the highest score in structure and texture, Kopanisti C in flavour and appearance and Kopanisti D in aroma and after-taste. |
- texture→ThemeOf→structure
- aroma→CauseOf→Kopanisti
- appearance→ThemeOf→aroma
- flavour→ThemeOf→appearance
- Kopanisti→CauseOf→flavour
- after-taste→ThemeOf→structure
- structure→CauseOf→Kopanisti
- texture→CauseOf→Kopanisti
- aroma→ThemeOf→appearance
- appearance→ThemeOf→highest
- flavour→ThemeOf→highest
- Kopanisti→CauseOf→after-taste
- after-taste→CauseOf→Kopanisti
- Kopanisti→CauseOf→texture
- Kopanisti→CauseOf→texture
- aroma→ThemeOf→highest
- appearance→ThemeOf→flavour
- flavour→CauseOf→Kopanisti
- Kopanisti→CauseOf→structure
- structure→ThemeOf→texture
- Kopanisti→CauseOf→aroma
- texture→CauseOf→Kopanisti
- Kopanisti→CauseOf→aroma
- aroma→ThemeOf→flavour
- appearance→CauseOf→Kopanisti
- flavour→ThemeOf→after-taste
- after-taste→ThemeOf→texture
- structure→CauseOf→Kopanisti
- Kopanisti→CauseOf→appearance
- texture→ThemeOf→aroma
- Kopanisti→CauseOf→appearance
- aroma→CauseOf→Kopanisti
- appearance→ThemeOf→after-taste
- flavour→ThemeOf→structure
- after-taste→CauseOf→Kopanisti
- structure→ThemeOf→aroma
- Kopanisti→CauseOf→highest
- texture→ThemeOf→appearance
- Kopanisti→CauseOf→highest
- aroma→ThemeOf→after-taste
- appearance→ThemeOf→structure
- flavour→CauseOf→Kopanisti
- after-taste→ThemeOf→aroma
- structure→ThemeOf→appearance
- Kopanisti→CauseOf→flavour
- texture→ThemeOf→highest
- Kopanisti→CauseOf→flavour
- aroma→ThemeOf→structure
- appearance→CauseOf→Kopanisti
- Kopanisti→CauseOf→texture
- after-taste→ThemeOf→appearance
- structure→ThemeOf→highest
- Kopanisti→CauseOf→after-taste
- texture→ThemeOf→flavour
- Kopanisti→CauseOf→after-taste
- aroma→CauseOf→Kopanisti
- flavour→ThemeOf→texture
- Kopanisti→CauseOf→aroma
- after-taste→ThemeOf→highest
- structure→ThemeOf→flavour
- Kopanisti→CauseOf→structure
- texture→CauseOf→Kopanisti
- Kopanisti→CauseOf→structure
- appearance→ThemeOf→texture
- flavour→CauseOf→Kopanisti
- Kopanisti→CauseOf→appearance
- after-taste→ThemeOf→flavour
- structure→CauseOf→Kopanisti
- texture→ThemeOf→after-taste
- aroma→ThemeOf→texture
- appearance→CauseOf→Kopanisti
- flavour→ThemeOf→aroma
- Kopanisti→CauseOf→highest
- after-taste→CauseOf→Kopanisti
- structure→ThemeOf→after-taste
|
495 |
36766173 |
9942 |
In addition, butyrate esters contribute to the flavor of Baijiu, for example, phenylethyl butyrate has the aroma of floral, green with a tropical winey nuance; ethyl butyrate has the aroma of sweet, apple like, fresh and lifting, ethereal; isoamyl butyrate has the aroma of wax, green apple, fruit, sweet, berry; propyl butyrate has the aroma of sweet, bubble gum and pineapple like with a light green nuance; and isobutyl butyrate has sweet, fruity, pineapple, apple, bubble gum, and tropical fruit flavors. |
- propyl→ThemeOf→sweet
- sweet→ThemeOf→isoamyl
- sweet→ThemeOf→isobutyl butyrate
- sweet→ThemeOf→propyl
- isoamyl→ThemeOf→sweet
- isobutyl butyrate→ThemeOf→sweet
|
496 |
36766173 |
9950 |
For Clostridium, Clostridium sensu stricto 12, Clostridium sensu stricto 11, and Clostridium sensu stricto 1 were the dominant microorganisms, among which Clostridium sensu stricto 12 increased gradually in the early fermentation stage, while those of Clostridium sensu stricto 11 and Clostridium sensu stricto 1 increased and stabilized in the middle and late fermentation stages. |
- Clostridium→CauseOf→increased
|
497 |
36766173 |
9967 |
Among which, there were five positive interactions in the three genera of Lactobacillus, Weissella, and Lactococcus, while the fungal genus Saccharomyces showed significant positive interactions with four bacterial genera, including Lactobacillus, Weissella, Lactococcus, and Clostridium sensu strictto 12 (Figure 6b). |
- interactions→CauseOf→Weissella
- Weissella→CauseOf→interactions
- Weissella→CauseOf→positive
- Weissella→CauseOf→interactions
- interactions→ThemeOf→positive
- interactions→ThemeOf→interactions
- interactions→CauseOf→Weissella
- interactions→ThemeOf→interactions
- interactions→ThemeOf→positive
|
498 |
36766173 |
10006 |
Although the abundance of Monascus was lower than that of the other two fungal genera (Aspergillus and Saccharomyces), it also showed a contribution to most of the flavor compounds in all samples, especially in sample 4, Monascus was positively correlated with a20 (hexanoic acid, ethyl ester) (Figure 8c). |
- Monascus→CauseOf→correlated
|
499 |
36845507 |
10054 |
Among LAB, the genera Aerococcus, Carnobacterium, Enterococcus, Tetragenococcus, Lactobacillus, Pediococcus, Leuconostoc, Weissella, Lactococcus, and Streptococcus were detected in the commercial makgeolli samples. |
- Weissella→CauseOf→detected
|
500 |
36845507 |
10058 |
Among all LAB genera, the genus Lactobacillus was dominant, accounting for 55.76% of the LAB genera, followed by Leuconostoc (16.32%), Weissella (11.86%), Pediococcus (11.04%), and Lactococcus (4.02%). |
- Weissella→ThemeOf→Lactobacillus
- Pediococcus→ThemeOf→Weissella
- Weissella→ThemeOf→Lactococcus
- Pediococcus→ThemeOf→Lactobacillus
- Weissella→ThemeOf→Pediococcus
- Lactobacillus→ThemeOf→Weissella
- Lactobacillus→ThemeOf→Lactococcus
- Lactobacillus→ThemeOf→Pediococcus
- Leuconostoc→ThemeOf→Weissella
- Lactococcus→ThemeOf→Leuconostoc
- Leuconostoc→ThemeOf→Lactococcus
- Lactococcus→ThemeOf→Weissella
- Leuconostoc→ThemeOf→Pediococcus
- Lactococcus→ThemeOf→Lactobacillus
- Weissella→ThemeOf→Leuconostoc
- Pediococcus→ThemeOf→Leuconostoc
|
501 |
36845507 |
10059 |
Lactobacillus, the most abundant genus, accounted for an average of 32.61 +- 27.31% of the relative abundance in the makgeolli microbiome, followed by Leuconostoc, Weissella, and Pediococcus. |
- Weissella→ThemeOf→Pediococcus
- Weissella→ThemeOf→Leuconostoc
- Pediococcus→ThemeOf→Weissella
- Leuconostoc→ThemeOf→Weissella
|
502 |
36845507 |
10060 |
Similarly, the most frequent LAB genus detected in all samples was Lactobacillus, followed by Leuconostoc, Weissella, Lactococcus, and Pediococcus. |
- Lactococcus→ThemeOf→Weissella
- Leuconostoc→ThemeOf→Lactococcus
- Lactococcus→ThemeOf→Lactobacillus
- Leuconostoc→ThemeOf→Pediococcus
- Lactococcus→ThemeOf→Leuconostoc
- Lactobacillus→ThemeOf→Weissella
- Lactobacillus→ThemeOf→Lactococcus
- Lactobacillus→ThemeOf→Pediococcus
- Weissella→ThemeOf→Lactococcus
- Pediococcus→ThemeOf→Weissella
- Weissella→ThemeOf→Lactobacillus
- Pediococcus→ThemeOf→Lactobacillus
- Weissella→ThemeOf→Pediococcus
- Pediococcus→ThemeOf→Leuconostoc
- Weissella→ThemeOf→Leuconostoc
- Leuconostoc→ThemeOf→Weissella
|
503 |
36845507 |
10069 |
3a shows that the commercial makgeolli products prepared using nuruk demonstrated a higher relative abundance of the genera Pediococcus and Leuconostoc and a lower relative abundance of the genus Streptococcus compared to that in the samples without nuruk. |
- genera→ThemeOf→higher
- Pediococcus→ThemeOf→relative abundance
- nuruk→CauseOf→higher
- Leuconostoc→ThemeOf→genera
- genera→ThemeOf→relative abundance
- Pediococcus→CauseOf→nuruk
- nuruk→ThemeOf→relative abundance
- Leuconostoc→ThemeOf→relative abundance
- higher→CauseOf→lower
- genera→ThemeOf→Pediococcus
- Pediococcus→ThemeOf→lower
- nuruk→CauseOf→genera
- Leuconostoc→CauseOf→nuruk
- relative abundance→ThemeOf→higher
- genera→ThemeOf→relative abundance
- relative abundance→ThemeOf→higher
- nuruk→CauseOf→Pediococcus
- Leuconostoc→ThemeOf→lower
- relative abundance→ThemeOf→genera
- genera→CauseOf→nuruk
- relative abundance→ThemeOf→relative abundance
- nuruk→ThemeOf→relative abundance
- relative abundance→ThemeOf→Pediococcus
- genera→ThemeOf→lower
- relative abundance→ThemeOf→genera
- nuruk→CauseOf→lower
- relative abundance→ThemeOf→relative abundance
- genera→ThemeOf→Leuconostoc
- relative abundance→ThemeOf→Pediococcus
- nuruk→CauseOf→Leuconostoc
- relative abundance→ThemeOf→nuruk
- Pediococcus→ThemeOf→higher
- relative abundance→ThemeOf→nuruk
- lower→CauseOf→higher
- Pediococcus→ThemeOf→relative abundance
- Leuconostoc→ThemeOf→higher
- relative abundance→ThemeOf→Leuconostoc
- Pediococcus→ThemeOf→genera
- relative abundance→ThemeOf→Leuconostoc
- Leuconostoc→ThemeOf→relative abundance
|
504 |
36845507 |
10078 |
Notably, 18 species were reported for the first time in rice wine, including Carnobacterium viridans, Enterococcus casseliflavus, Tetragenococcus halophilus, Lactobacillus hamsteri, Lactobacillus helveticus, Lactobacillus manihotivorans, Lactobacillus paralimentarius, Lactobacillus paraplantarum, Lactobacillus pontis, Lactobacillus zeae, Pediococcus ethanolidurans, Leuconostoc fallax, Weissella beninensis, Weissella ghanensis, Weissella hellenica, Weissella viridescens, Lactococcus garvieae, and Streptococcus luteciae. |
- Weissella hellenica→ThemeOf→Lactococcus
- Lactococcus→ThemeOf→Weissella hellenica
- Lactococcus→ThemeOf→Weissella viridescens
- Weissella viridescens→ThemeOf→Lactococcus
|
505 |
36845507 |
10083 |
According to Chai et al., LAB genera dominated the makgeolli system from day 2, with the population shifting complementarily between Pediococcus and Weissella. |
- makgeolli→ThemeOf→Weissella
- Weissella→ThemeOf→makgeolli
|
506 |
36845507 |
10088 |
In addition, some strains of Enterococcus casseliflavus, Tetragenococcus halophilus, Lactobacillus delbrueckii, Lactobacillus paraplantarum, Lactobacillus zeae, Pediococcus acidilactici, Leuconostoc mesenteroides, Weissella hellenica, Weissella paramesenteroides, and Lactococcus garvieae, which were detected in this study, have been reported to possess probiotic potential. |
- Weissella→CauseOf→Enterococcus
- Weissella→CauseOf→Lactococcus
- Enterococcus→CauseOf→Weissella
- Enterococcus→CauseOf→Weissella
- Weissella→CauseOf→Enterococcus
- Weissella→CauseOf→Lactococcus
- Lactococcus→CauseOf→Weissella
- Lactococcus→CauseOf→Weissella
|
507 |
36981219 |
4 |
In addition, certain LAB strains are capable of transforming isoflavone aglycones into compounds with a greater biological activity, such as dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA), dihydrogenistein (DHG) and 6-hydroxy-O-desmethylangolensin (6-OH-O-DMA). |
- O-desmethylangolensin→ThemeOf→dihydrodaidzein
- biological activity→ThemeOf→O-desmethylangolensin
- DHG→ThemeOf→O-desmethylangolensin
- O-desmethylangolensin→ThemeOf→biological activity
- biological activity→ThemeOf→dihydrodaidzein
- DHG→ThemeOf→dihydrodaidzein
- O-desmethylangolensin→ThemeOf→6-hydroxy-O-desmethylangolensin
- biological activity→ThemeOf→6-hydroxy-O-desmethylangolensin
- DHG→ThemeOf→biological activity
- O-desmethylangolensin→ThemeOf→transforming
- biological activity→ThemeOf→transforming
- DHG→ThemeOf→6-hydroxy-O-desmethylangolensin
- O-desmethylangolensin→ThemeOf→DHG
- biological activity→ThemeOf→DHG
- DHG→CauseOf→transforming
- dihydrodaidzein→ThemeOf→O-desmethylangolensin
- 6-hydroxy-O-desmethylangolensin→ThemeOf→O-desmethylangolensin
- dihydrodaidzein→ThemeOf→biological activity
- 6-hydroxy-O-desmethylangolensin→ThemeOf→dihydrodaidzein
- dihydrodaidzein→ThemeOf→6-hydroxy-O-desmethylangolensin
- 6-hydroxy-O-desmethylangolensin→ThemeOf→biological activity
- dihydrodaidzein→ThemeOf→transforming
- 6-hydroxy-O-desmethylangolensin→ThemeOf→transforming
- dihydrodaidzein→ThemeOf→DHG
- 6-hydroxy-O-desmethylangolensin→ThemeOf→DHG
|
508 |
36981219 |
6 |
Another strategy in the bioconversion of isoflavones is the heterologous expression of genes from Slackia isoflavoniconvertens DSM22006, which have allowed the production of DHD, DHG, equol and 5-hydroxy-equol in high concentrations by engineered LAB strains. |
- 5-hydroxy-equol→ThemeOf→production
- DSM22006→ThemeOf→DHD
- equol→ThemeOf→5-hydroxy-equol
- production→ThemeOf→equol
- DHG→ThemeOf→allowed
- DSM22006→ThemeOf→equol
- equol→ThemeOf→DHG
- DHG→ThemeOf→5-hydroxy-equol
- DSM22006→ThemeOf→production
- equol→ThemeOf→DSM22006
- DHG→ThemeOf→DSM22006
- DHD→ThemeOf→allowed
- equol→ThemeOf→DHD
- DHG→ThemeOf→DHD
- DHD→ThemeOf→5-hydroxy-equol
- equol→ThemeOf→production
- 5-hydroxy-equol→ThemeOf→allowed
- DHG→ThemeOf→equol
- DHD→ThemeOf→DHG
- production→ThemeOf→allowed
- 5-hydroxy-equol→ThemeOf→DHG
- DHG→ThemeOf→production
- DHD→ThemeOf→DSM22006
- production→ThemeOf→5-hydroxy-equol
- 5-hydroxy-equol→ThemeOf→DSM22006
- DSM22006→CauseOf→allowed
- DHD→ThemeOf→equol
- production→ThemeOf→DHG
- 5-hydroxy-equol→ThemeOf→DHD
- DSM22006→ThemeOf→5-hydroxy-equol
- DHD→ThemeOf→production
- production→ThemeOf→DSM22006
- 5-hydroxy-equol→ThemeOf→equol
- DSM22006→ThemeOf→DHG
- equol→ThemeOf→allowed
- production→ThemeOf→DHD
|
509 |
36981219 |
40 |
Daidzein and genistein aglycones can be transformed into DHD and DHG, respectively, by hydrogenation reactions (Figure 2 and Figure 3). |
- genistein→ThemeOf→DHD
- genistein→ThemeOf→transformed
- genistein→ThemeOf→DHG
- DHD→ThemeOf→genistein
- DHD→CauseOf→transformed
- DHG→ThemeOf→genistein
- DHG→CauseOf→transformed
|
510 |
36981219 |
47 |
Recently, we observed that O-DMA and 6-OH-O-DMA were metabolized mainly from daidzein and genistein by LAB strains through fission of the C-ring, although O-DMA and 6-OH-O-DMA could also be produced from DHD and DHG with lower efficiency. |
- O-DMA→CauseOf→metabolized
- metabolized→CauseOf→O-DMA
|
511 |
36981219 |
49 |
DHD and DHG must be transformed into tetrahydrodaidzein (THD) and tetrahydrogenistein (THG) for their subsequent transformation into equol and 5-hydroxy-equol (5-OH-equol), respectively. |
- DHD→ThemeOf→tetrahydrodaidzein
- THD→ThemeOf→DHG
- DHD→ThemeOf→THD
- THD→ThemeOf→DHD
- equol→ThemeOf→DHG
- THD→ThemeOf→equol
- equol→ThemeOf→DHD
- THD→ThemeOf→tetrahydrodaidzein
- equol→ThemeOf→tetrahydrodaidzein
- equol→ThemeOf→THD
- DHG→ThemeOf→equol
- tetrahydrodaidzein→ThemeOf→DHG
- DHG→ThemeOf→tetrahydrodaidzein
- tetrahydrodaidzein→ThemeOf→DHD
- DHG→ThemeOf→THD
- tetrahydrodaidzein→ThemeOf→equol
- DHD→ThemeOf→equol
- tetrahydrodaidzein→ThemeOf→THD
|
512 |
36981219 |
66 |
LAB harboring pNZ:TuR.gly913 or pLEB590.gly913 (a food grade vector), both including gly913 under the promoter of elongation factor Tu of L. reuteri CECT 925, improved the ability to transform glycoside isoflavones into their aglycones. |
- transform glycoside isoflavones→CauseOf→gly913
- gly913→CauseOf→improved
- gly913→CauseOf→transform glycoside isoflavones
|
513 |
36981219 |
75 |
Since both DHD and DHG are bioactive isoflavones and can promote the production of equol and 5-OH-equol in equol producing individuals, it would be of interest to produce both DHD and DHG in high concentrations. |
- DHG→ThemeOf→production of equol
- production of equol→ThemeOf→DHD
- DHD→CauseOf→promote
- production of equol→ThemeOf→5-OH-equol
- DHD→ThemeOf→5-OH-equol
- DHD→ThemeOf→production of equol
- 5-OH-equol→ThemeOf→promote
- 5-OH-equol→ThemeOf→DHG
- 5-OH-equol→ThemeOf→DHD
- 5-OH-equol→ThemeOf→production of equol
- DHG→CauseOf→promote
- production of equol→ThemeOf→promote
- DHG→ThemeOf→5-OH-equol
- production of equol→ThemeOf→DHG
|
514 |
36981219 |
83 |
Likewise, the co-fermentation of soy beverages with the engineered L. fermentum INIA P584L harboring dzr, ddr and tdr and Bifidobacterium pseudocatenulatum INIA P815, a bacteria with high glycosidase activity, allowed the production of equol and 5-OH-equol (Figure 4B). |
- ddr→CauseOf→allowed
- dzr→CauseOf→allowed
|
515 |
36981219 |
92 |
In this sense, soy beverages fermented by L. paracasei NTU 101 was effective in preventing hyperlipidemia and atherosclerosis. |
- NTU 101→ThemeOf→L. paracasei
- hyperlipidemia→ThemeOf→atherosclerosis
- NTU 101→ThemeOf→atherosclerosis
- NTU 101→ThemeOf→hyperlipidemia
- atherosclerosis→ThemeOf→preventing
- atherosclerosis→ThemeOf→L. paracasei
- L. paracasei→CauseOf→preventing
- atherosclerosis→ThemeOf→NTU 101
- L. paracasei→ThemeOf→NTU 101
- atherosclerosis→ThemeOf→hyperlipidemia
- L. paracasei→ThemeOf→atherosclerosis
- hyperlipidemia→ThemeOf→preventing
- L. paracasei→ThemeOf→hyperlipidemia
- hyperlipidemia→ThemeOf→L. paracasei
- NTU 101→ThemeOf→preventing
- hyperlipidemia→ThemeOf→NTU 101
|
516 |
36981219 |
94 |
In addition to the improvement in their bioavailability, the increased antioxidative activity of fermented soy food is attributed primarily to bioactive isoflavones, such as daidzein and genistein produced from isoflavones present in soy foods, although other factors, such as the production of bioactive peptides, have been also described. |
- daidzein→CauseOf→increased
|
517 |
36981219 |
103 |
Therefore, the estrogenic activity of O-DMA and equol is higher than that of daidzein because O-DMA and equol are able to activate the binding of both ERbeta and ERalpha to the estrogen response element better than diadzein. |
- O-DMA→CauseOf→binding
- O-DMA→CauseOf→higher
- higher→CauseOf→activate
- O-DMA→CauseOf→activate
- activate→CauseOf→higher
- binding→CauseOf→O-DMA
|
518 |
36981219 |
112 |
Similarly, genistein, through the inhibition of the master regulatory transcription factors GATA-3 and STAT-6, decreased airway inflammation associated with Th2-type cytokines in a murine asthmatic model. |
- decreased→CauseOf→inhibition
- genistein→CauseOf→decreased
- genistein→CauseOf→inhibition
- inhibition→CauseOf→decreased
|
519 |
36981219 |
114 |
Moreover, daidzein induces apoptosis in hepatic cancer cells via the mitochondrial pathway. |
- daidzein→CauseOf→induces
- hepatic cancer→ThemeOf→daidzein
- hepatic cancer→ThemeOf→induces
- daidzein→ThemeOf→hepatic cancer
|
520 |
36981219 |
117 |
Additionally, the presence of equol and O-DMA has been associated with the inhibition of cancer cell proliferation and a chemoprotective role in the prevention of several cancers. |
- O-DMA→CauseOf→inhibition
- equol→CauseOf→inhibition
- presence→CauseOf→inhibition
|